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* EXECUTIVE SUMMARY

GOALS

The primary goal of this research was to compare the processing strategies used by human subjects
and neural networks in classifying acoustic signals. Secondary goals were to compare subjects

with and without sonar training and to investigate the effects on the neural networks of adding

U noise to the acoustic signals.

* SIGNALS

The initial signal set was designed to provide a challenging classification task. The set was created

by placing hollow metal acoustic targets on a sandy bottom in a large tank of water, insonifying

them with a sonar signal, and collecting the reflected energy. The bottom environment was

selected to provide reverberation to obscure the return from the target, making the classification

task more difficult. For reference, signals were also collected from the targets suspended in the

I water column. The signal sets incorporated parameters by which the resulting signal classes

differed: Material (Brass or Steel), Thickness (5% or 10% of outside diameter), and Angle (90',

4 450, ur 00 to the insonifying beam). Subjects and networks were asked to classify the signals by

these parameters.

Pilot experiments indicated that the classification of the underwater signals was very difficult, so a

third signal set was created. The original targets were physically struck and the resulting vibrations

were recorded. This signal set, denoted as "Air" signals, lacked the parameter of angle but added

the parameter of striker (metal, plastic, and wood).

CLASSIFICATION EXPERIMENTS 7--D allI
After considerable signal processing to make the underwater signals audible, human subjects

classified signals from each set in a series of experiments. Subjects were asked to identify each

parameter of the signals separately. Over several sessions subjects received feedback in which the

correct class of the current signal was revealed, then took a final session without feedback. Two ......................
groups of subjects were tested. The primary group, upon whose results signal processing
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I
strategies were derived, was made up of Navy sonar personnel. The other group consisted of

college students.

EXPERIMENT RESULTS

I Experiments with the Bottom and Free-field signals revealed that these classification tasks were

very difficult. In both cases only Angle was classified at levels above chance. Results from the
Bottom classification experiment, however, indicated that the Navy subjects classified Angle

correctly at a level significantly higher than that of the students.I
The Air signal set was less difficult to classify. Both Navy and student subjects performed at
levels higher than chance on all parameters of the Air signal set. Striker was the most difficult

parameter to classify. Faced with a classification task of reasonable difficulty, the Navy subjects

performed significantly higher than the student subjects by several measures.

MULTIDIMENSIONAL SCALING

During the classification experiments both the correct and incorrect responses of the subjects were
recorded. These became r.4 w data for confusion matrices which described how often a subject
confused the class of a signal presented in the experiment with every other signal class.

Multidimensional scaling was used to create a geometrical model of this data, in which the distance

between signal class, is related to the degree of confusion between the classes. Only the best
Navy subjects were modeled in this manner. The scaling solutions provided the dimensions which

were taken to reflect subject strategies.

NEURAL NETWORKS

3 Backpropagation networks were trained to classify the preprocessed signals using signal

transforms in both the time and frequency domains. Integrator gateway networks were also

trained, using frequency information taken from t sliding window over the duration of the signals.

For each signal set, backpropagation networks were developed using a training set which consisted
of half of the available signals, and a validation set made up of the other half of the available
signals. The networks did not see the validation set while learning was enabled. As training
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progressed the validation set was periodically presented with learning disabled, and the network
weights that produced the highest perfonrmance on the validation set were recorded. Performance

results are based on testing these weights with the validation set. Networks were trained tsing

several different numbers of hidden nodes to evaluate the best architecture. Performance results

are summarized in Table ES-1.

Number of Hidden Nodes

0 2 4 6

Frequency Free Field Excellent Difficulty on Excellent Excellent
Angle

Bot'om Exccllcnt Difficulty on Excellent Lxceiicnt
Material

Air Excellent Difficulty Excellent Excellent
on Striker

Difficulty on
Time Free Field Excellent Material, Excellent Excellent

Thickness

Difficulty on
Bottom Excellent Material, Excellent Excellent

Thickness
Difficulty Difficulty on Difficulty DifficultymAir DifiStyie aeil
on Striker Material, on Striker on Striker

Striker

Table ES-1 Classification performance of backpropagation neural networks. "Excellent" indicates
performance from 95 to 100%. "Difficulty" indicates performance from 60 to 90% on the

indicated parameter, excellent on other parameters.I
In the frequency domain, all networks performed very well except those with two hidden nodes.
Within each signal set, networks with two hidden nodes had difficulty with one parameter, while

performing well on the other two parameters. This is attributed to the relative lack of free

parameters (weights) in comparison to networks with 0, 4, or 6 hidden nodes. While excellent

performance without a hidden layer indicates that the problem may be linear, there were a large

number of parameters available to these networks since all inputs were connected to all outputs.

I
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I
The relatively poor performance of networks with two hidden nodes persisted in the time domain.
The parameters that were troublesome changed for Free-field and Bottom networks, giving some3 indication as to which transforms of the signals carry the most information about which
parameters. The Air networks did not perform as well on the Striker parameter when using time
domain input. Human subjects also had the most difficulty with the Striker parameter.

Neural networks performed well on the classification task when properly configured and trained.

They achieved high performance using signal data in either time or frequency domain. Air
networks showed a preference for data in frequency domain based on relative performances. Four
hidden nodes was generally the best architecture to balance high performance and a reasonably
small number of free parameters in the network.

EFFECTS OF ARTIFICIAL NOISE

I These networks were tested with signals to which increasing levels of random noise were added.
As the signal-to-noise ratio (SNR) decreased so did the classification performance, although the
networks were somewhat robust to reasonable noise levels. Performance fell off gradually. When
comparable networks were trained using signals to which noise was added, the resulting networks
were almost always more robust to noise than networks trained without noise added to the inputs.

INTEGRATOR GATEWAY NETWORKS

Integrator Gateway Networks (IGN) were also successful at the classification task. These
networks take input in the form of frequency information from a series of windows over the

duration of the signal. Each window is applied to the network until the entire signal has been
applied. IGNs use a complex architecture to record and process this data. These networks were

trained with Bottom and Air signals.U
IGNs trained with Air signals performed perfectly on Material and Thickness, and well on Striker.

Bottom IGNs performed just above chance on Material and Thickness, and rather well on Angle.
In both cases the networks' relative performances are the same as those of most subjects. When
the confusion data from a Bottom IGN was scaled, the resulting dimensions matched those of the

human subjects.

I
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* TOOLS FOR MODELING DIMENSIONS

Several measures of the signals were computed in order to model the human dimensions created by

scaling. In the frequency domain the spectrum can be viewed as a probability density function.

From that premise measures such as mean frequency and standard deviation of the frequency

distribution were computed. Two measures in the time domain were computed by fitting an

exponential to the envelope of the signals. Finally, each Air signal was fit with a series of

c decaying sine waves, which were characterized by several parameters each.

A number of these signal measures were highly correlated with human scaling dimensions. These

correlations were assumed to indicate that the signal measure is a reasonable model of the signal

processing on that dimension, lacking any means of directly measuring the processing of the

subjects. In addition to the signal measures, every human dimension was also correlated to twý'.'o or

more neural network hidden nodes. That is, the activations generated at the hidden node for each

signal class closely resembled the placement of the signal classes on a scaling dimension. The
processing strategies of correlated hidden nodes was explored. Certain dimensions are also

correlated between scaling solutions, and for this reason dimensions are often analyzed in pairs.

The results of these analyses are summarized in Figures ES-I and ES-2.I
NETWORK HIDDEN NODES AND DIMENSIONS

Neural network hidden nodes often applied the same strategies as the subjects on particular

dimensions. An example is the set of relationships among the first scaling dimension of the top

three subjects ("Best") on Bottom signals, the first dimension of the single best subject ("N6"),
and two correlated time domain hidden nodes. The subjects differentiated 900 signals from other

signals on this dimension using the large transient characteristic of 90' signals. The hidden nodes

applied the same strategy. Correlated nodes trained with frequency domain data applied a strategy

which took advantage of a signal feature closely related to the transient.

A second example of subject and network parallel strategies is found on the first dimension of the

Best scaling solution for Air signals and the first dimension of the N4 solution. These subjects

were sensitive to differences in the rates of decay of the ringing portions of the signals, and to the

highly related frequency domain feature of standard deviation. Two hidden nodes in the time

I
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domain applied a processing strategy which measured the rate of decay. In addition, two hidden

nodes in the frequency domain were sensitive to differences in standard deviations.

In the time domain, the nodes with the highest level of similarity to the dimension model had been

trained using noisy inputs. These nodes employed virtually the same strategies are their human

counterparts. When a correlated node had been trained without noisy inputs, it employed a more

complex but clearly related strategy. The first dimensions of the Air scaling solutions provide anI example. Nodes trained with frequency domain data usually showed no difference in strategies

between those nodes trained with and without noise. The strategies, however, bore close

resemblance to those of the correlated dimensions.

Some dimensions appeared to reflect subject strategies exclusive to a single domain. Network

nodes from the other domain were nevertheless highly correlated. This can be seen in the two time

domain hidden nodes which are correlated with the first dimensions of the Air scaling solution.

Such a capability might be suggestive of strategies that the subjects could employ, particularly

subjects who have not learned to extract all possible information from a signal.

SUMMARY

The primary goal of the project was achieved by comparing the acoustic processing strategies of

subjects and networks. Networks usually developed essentially the same strategies as subjects

when given signals in the proper domain. When the signals used to train a network were in the

opposite domain of the strategy used by subjects, the network usually developed a related strategy.

A secondary goal was to compare the classification performances of subjects who were and were

not trained in sonar. Subjects trained in sonar were better classifiers in tasks of moderateI difficulty. Another goal was to evaluate the effects of low SNR signals on the networks.

Networks were made more robust to noise by training with corrupted signals.

I
EXTENSIONS

Within the current signal set, several logical extensions of the research may make sense. One

might be interested in the weight structure of a network trained to produce the same output as that

of a subject attempting to classify the signals. Differences between high and low performers could

be investigated in this manner, as well as differences between various signal input transforms.

I viil
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Explanations of the dimensions analyzed in this effort might also be forthcoming from the weight

structures of networks trained to replicate the dimensions. Given their capability to learn signal

features networks might be also be explored as intelligent automated assistants to sonar operators,

scanning large amounts of data for certain features.

I The human data has also not been fully tapped. Dimensions were derived only from top Navy

performers. Differences in processing strategies between high and low performers, and Navy and

student subjects, may be of interest. Finally, the techniques of the research should be applied to

data more in keeping with the Navy subjects' typical acoustic processing tasks.

I
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1.0 MOTIVATION

Both people and neural networks are often very good classifiers of acoustic signals into their

classes of origin. Netw',rks, in fact, often outperform people on signals of moderate to high

complexity. Pe r,-' are assumed to apply certain signal processing techniques, in the context of the

brain, to achieve a high level of performance on such tasks. Networks learn these classifications

through application of examples and modification of the network's weight structure. The

completed weight structure embodies the techniques by which the network accomplishes the

classification task.

Neither human nor network processing is necessarily easy to describe when a task of sufficient

complexity is performed. Since the network encodes its processing strategy on weights which are

accessible, we are interested in means of analyzing those weights to derive the underlying

processing strategies. Unfortunately, we cannot perform the same analysis of human processing

strategies by looking at the analogous, physiological processes. Human processing must be

inferred through analysis of data derived during the classification process.

The intent of the research described here is to derive the strategies of subjects asked to perform a

set of classification tasks, and to compare those strategies to the strategies of neural networks

performing the same tasks. Strategies of the human subjects were derived using multidimensional

scaling techniques which convert data concerning the confusions subjects' experience during the

classification task into a form which describes the relationships among the signals the subjects

were attempting to classify.

Networks are often performing too well to provide such data, but their weight structures are

immediately accessible. They are analyzed by locating those elements of a network which most

closely recreate the relationships among the signals found by the multidimensional scaling process,

observing the local weights and their relationships to other parts of the network, and applying

signals from various classes and observing the local reaction of the network.

Several other objectives emerge from this main objective. The selection of signal sets is vital to the

ensuing classification tasks, and three different sets are employed here which provide tasks of

varying complexity. Human subjects are taken from two groups, in order to compare the

performances of subjects with and without sonar training and to derive strategies from the highest

performing trained subjects. The effects of obscuring the signals presented to networks with

I-1



artificial noise is of interest to judge the effect on performance, and more importantly, on the
strategies developed by the networks. Thus this research focused on networks and humans

classifying acoustic signals, and the analysis of their performance and strategies.
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1 2.0 METHODOLOGY OVERVIEW

The goals of the project were to examine and identify the strategies used by human listeners and by

neural networks to classify a challenging signal set, and to compare those strategies. The

methodology applied to reach these goals is described below.

1 2.1 SIGNALS

The acoustic signal set was the basis for all classification tasks. Its design was a collaborative

3 effort between ARD, Dr. Douglas Todoroff, and Dr. James Howard. A degree of difficulty was

sought to provide a reasonable challenge to both subjects and networks. The strategies employed

3 to accomplish a challenging task were expected to be of greater interest than those which would

result from an easier task. A source of reverberation was sought to complicate the classification

task. To this end the acoustic targets were placed en a sandy bottom. The bottom provided a

reflection of the insonifying pulse, and also presumably altered the echo from the target from its

"free-field" condition (suspended in the water column).

Signals were collected in a Navy laboratory under the supervision of Dr. Todoroff. The targets

and collection scenarios were varied to produce three parameters by which the resulting signals

varied: material of the target, thickness of the target, and angle between the axis of insonification

and the axis of the target. Free-field signals were collected in addition to Bottom signals to provide

a reference standard. As detail ".n later sections, the underwater signals proved more difficult to

classify than was ideal for the purpose of deriving strategies, so a third signal set was collected.

This set consisted of acoustic signals generated by striking the targets manually with various

materials. This set was referred to as the "air" set since it was not collected underwater. The

resulting acoustic events proved appropriately difficult for human subjects to classify, and

subsequent analyses were conducted on both Bottom and Air signals and the corresponding test

* results.

2.2 CLASSIFICATION EXPERIMENT

3 Data on human classification strategies were derived from experiments in which the subjects

classified the signals from the three signal sets. After listening to a signal, the subject was asked to

select the Material, Thickness, and Angle (or, in the case of the Air signals, Striker) of the target

3 2-1
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from which that signal was created. During some sessions of the experiment feedback- was
provided so that the subjects could learn the correct classifications. For each signal presented, both

the correct and actual responses were recorded. In addition to the separate parameters, the
performance on all parameters simultaneously was of interest and was derived from the stored

data.

In collaboration with Dr. David Kobus, a set of Navy sonar personnel was used as the primary
subject group. For comparison a set of college students was also tested. Their performances are
compared in Section 6. Although the tasks in these experiments did not necessarily resemble the

sonar tasks that the navy personnel are trained for, using these subjects allowed us to compare their
performances to those of subjects without a particular professional background in acoustic tasks.
Although all hearing people have experience in processing acoustic information and making

classifications based on acoustic data, the navy subjects may be better prepared to perform specific3 tasks based on this data by virtue of professional training and experience.

2.3 SCALING AND DIMENSIONS

The data generated during the classification experiments consisted of the subjects' judgments of the3 material, thickness, and angle/striker parameters for each signal presented. When such data is

compared to the actual values of those parameters for the given signal, a confusion matrix results.

The confusion matrix quantifies the degree to which any pair of signals is confused in the
classification task. It is assumed that a pair of signals frequently confused by the subject sounds

similar to the subject, and that the confusion data measure the degree of similarity.

With similarity data availabl3, multidimensional scaling became an attractive means of modeling the
I subjects' responses. By this technique the similarity data were used to place the signals in a three-

dimensional space in such a manner that the distances between signal pairs corresponded to the

similarity judgments of the subjects for the pairs. The scaling technique also provided the
individual dimensions on which the signals were placed. These dimensions are assumed to
correspond to processing methods or strategies used by the subjects in performing the signal

classifications.

I
I
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I
2.4 ACOUSTIC MEASURES OF THE SIGNALS

3 To model these dimensions, and presumably the underlying strategies, several techniques were

used to characterize the signals. These techniques, which ranged from finding the mean frequency

content of the signals to fitting exponentially decaying curves to them, generated scalar measures

of the signals using acoustic information. In many instances these measures were highly correlated

with the values of the signals on the scaling dimensions, suggesting that the given measure was

related to the signal processing strategy employed by the subject and represented on the correlated

dimension.I
2.5 NEURAL NETWORKS

In addition to the physical measures employed to model the dimensions, neural networks were

employed t- classify the signals. The networks' classification performances were compared to

those of the subjects to reveal certain similarities and differences. Some networks were trained
with time domain data, some with frequency domain data, and some with a combination of time

and frequency data. The networks were trained with and without the addition of random noise to

their inputs, which resulted in remarkable differences in network performance and in the structure

of the resulting network weights (and thereby the strategies used by the networks to perform the

classifications).

The network weights provided the means by which the networks' strategies were compared to the

subjects' strategies. A subset of the trained network nodes gave output activations which were

highly correlated with the human scaling dimensions. These network nodes were reaching the

same 'conclusions' about the signals as did the subjects, at least as indicated by the scaling

dimensions. It was therefore of considerable interest how the correlated nodes went about

assigning activations to the various signals. These issues are explored in Section 10 by

observation of the weights, by application of the signals to the nodes, and by comparison of the

intermediate results of the nodes for various signals.

The methods used to accomplish the tasks and analyses set forth in this section, and the results of

those analyses, are described in detail in the remainder of the report.

2-3
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* 3.0 SIGNALS

The signal set was an extension of a signal set used in previous acoustic research. The design of
this set was produced in consultation with Dr. Doug Todoroff of the Naval Coastal Systems Center
(NCSC) in Panama City, Florida. The major departure from the earlier research was to place the

targets on a sandy bottom to introduce a reverberation component to the signal set. These

"Bottom" signals became the early centerpiece of the study. Signals were also collected from the
same targets as they hung from monofilament in the water column of the same collection tank.

These "Free-field" signals did not suffer the complexities of the bottom reflection or the effect of
the bottom on the return from the target. These signals were meant to be the control set with which

to judge the effects of the bottom reverberation on the target returns. As detai! d in subsequent
sections, poor initial subject performance on the Bottom set led to the collection of a third signal

set. This set consisted of sounds produced when the targets were struck as the targets hung from
monofilament, in air, by strikers made of various materials.

For the signal sets four acoustic targets were designed and constructed. Three separate sets of

acoustic signals were generated from these targets. Two signal sets, consisting of underwater
Free-field and Bottom reflection returns, were collected in laboratory facilities at NCSC. The third

set, containing sounds from targets manually struck using various materials, was collected in a

sound-attenuated laboratory at the Catholic University of America. For each of the sets the

parameters of Material and Thickness were varied. The third parameter varied was either the angle
of insonification, in the case of the Free-field and Bottom sets, or the Striker, in the case of the

"Air" signals. The Material parameter had been identified in conversations with Dr. Todoroff and

Dr. Howard as an extension of the complexity found in the signals used in our previous acoustic
classification work. The Thickness parameter is a standard in mine classification work and was

also used in our previous project.

3.1 FREE-FIELD AND BOTTOM SIGNALS

All of the signal sets were generated using four targets which were cylindrical, enclosed, hollow,
and metal. They were constructed as steel and brass cylinders with rounded end caps, and

measured four inches in length by 3/4 inches in diameter. As well as having different materials,

the targets had two shell thicknesses which were measured as a percentage of outside diameter.
For each Material two targets were made, one at 10% (called "Thick") and the other at 5% ("Thin")

3-I
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of the shell diameter. For the Free-field and Bottom signals, the targets' angles relative to the

transducer were also varied. The angles used were 900, 450, and 00, where 900 was the broadside

orientation, 00 was an end-on perspective, and 450 was in between the two. The combination of
the parameters of two Materials, two Thicknesses, and three Angles produced 12 signal classes.

I The Free-field and Bottom signals were active sonar returns generated by insonifying targets in a
10'xlO'x7' tank filled with water. The tank and target setups are illustrated in Figures 3.1-1 and

3.1-2. The Free-field signals were so named because the targets were suspended in the tank by

monofilament and were of sufficient distance from the walls and floor to avoid interfering

reverberations. The Bottom reflection signals were a product of targets laid on a smooth sand

surface so that the target energy collected was embedded in reverberation from the sand. The Air
signals were created by hanging each target by monofilament from horizontal crosspieces on a

vertical metal stand.

I For the Free-field and Bottom cases the insonifying signals were generated at 200, 400, 600 and

800 kHz. A set of sinusoids of varying numbers of cycles were produced for each of the

frequencies. As the targets were insonified under the various conditions their reflections were
collected along the axis of insonification by a receiver. For the Free-field conditions the

transducer/receiver pair and the target hung on a line parallel to the floor of the tank. The Bottom
condition required that the transducer/receiver pair be angled toward the target on the sand, and a

grazing angle of 450 from the floor of the tank was used. Once a signal's return energy passed
through the receiver it was fed through a preamplifier and filter, and captured by a digital

oscilloscope onto a personal computer. The hardware specifications for both conditions are

detailed in Figure 3.1-3.

I During the collection process settings on several of the hardware components were adjusted to

maximize the quality of the signal being captured. For each group of signals from the same

condition, the oscilloscope cursor, which controlled the points that were digitized, was adjusted to
include all of the energy from the signals in the 2048 point window. A filter with choices for

high-pass and low-pass settings was adjusted each time the insonifying frequency changed. The
high-pass filter was always set at 100 kHz, but the low-pass filter was set according to the

frequency of the insonifying pulse. For instance, it was set to 400 kHz for a 200 kHz pulse and to

its highest option of 1 MHz for the 600 kHz and 800 kHz sinusoids. The combination of a
separate preamplifier and the voltage scale on the oscilloscope controlled the relative amplitudes of

* 3-2

I



________7.0'

TRANSDUCER &
RECEIVER

U 1~--10.01

FigLurc3.1-1 Tank Set-up for Free-Field Signal Collection

I 3-3



MI

* 0 .01

I00

Fiue312TnIe-pfrBtonRfeto inlCleto
3-



IHewlett Packard EIN 2401 50 dB
3314A Power

Function Amplifier

- GeneratorOu JE8
In.. ut E-8

I Transducer

Transmit Signal

Receive Signal E-8
I Receiver

I PanametricsUltrasonic
Preamplifier

Receive Signal

Ithaco 4213
Filter

I j
Receive Signal

Hewlett Packard Nicolet 2090
5 180A* 1 rge iiaTrigger Waveform Oc- Trigger Digitall

Recorder Oscilloscope

IEEE - 488 GPIB
ConnectionI1

Macintosh 1lsi TOPS Compaq 386/20
Computer Local Area Portable PC

* Only Using Trigger Delay

I
Figure 3.1-3 Underwater Signal Collection Hardware

1 3-5



I
Sthe signals. Since the oscilloscope could capture 12 bits of resolution, the goal was to take

advantage of its full range by increasing the amplitude of the signal as much as possible without
being in danger of clipping any of its values. The gain on the preamplifier was set at either 0, 10,

or 20 dB. The voltage scale on the oscilloscope could be set at 400 mV, 200 mV, I V or 2 V.
Larger voltages meant that the incoming signal was large enough that a smaller voltage setting

would produce clipping. The opposite effect existed for the preamplifier gain. Using the various
hardware components' settii,-,s, the signal set was adjusted so the maximum amplitude

representation possible was captured during collection.

3 The combinations of frequencies and sinusoid cycles used in capturing the signal sets can be seen
in Table 3.1-1. The strategy was to produce signals with both a constant pulse width across the

frequencies and a constant number of cycles (4) across the frequencies. Eliminating the redundant

combinations, ten conditions were provided. Within each condition 16 individual signals were

recorded to allow noise reduction by averaging. The signals were recorded at 2 MHz over 12 bits,

with 2048 samples per signal. In addition to the Bottom and Free-field conditions, bottom-only
and noise signals were recorded. The total signal set is summarized in Figure 3.1-4.

Frequency Constan Constan Variable
SPulse Width Pulse Width Pulse Width

200 2 (4) 4
400 4 8 (4)
600 6 12 4
800 8 16 4

where (4) = Duplicate

I Table 3.1-1 Frequency and Sinusoid Cycle Combinations for Signal Collection

The oscilloscope did not provide an automatic means of adjusting the DC offset of the signal to

zero, so the first step in being able to use the signals required that the DC offset be eliminated from

each signal. This was accomplished by adding all points in the set of 16 instances of one type of

signal and dividing each point in the signal by 16*2048. This result is then subtracted from each

point in each of the 16 signals, resulting in 16 signals which are mean 0 adjusted. The adjustment

was done over 16 signals because the oscilloscope was not changed between individual signal
shots while the data was being collected. After removing the offset the 16 adjusted instances of

each signal class were averaged to produce one averaged, mean 0 adjusted signal. The averaged
signals were low-noise versions which, with further signal processing for particular needs, could

I
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Figure 3.1-4 Underwater Signals Collected
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be used in the human and network tasks. Any signal processing performed on the signals were

based on the mean 0 adjusted signals.

3.2 AIR SIGNALS

Due to the severe initial difficulty in classifying the underwater sounds, as discussed in Sections 4

and 6, it was decided that a different approach to the data presented in the experiments could be3 helpful. With this in mind it was decided that the targets used in the original conditions would be

used in creating a set of non-underwater returns. A sound-attenuated laboratory at the Catholic

University of America was chosen as an appropriate environment for the signal set generation.

The signals were created by suspending each target from a metal stand and striking it with a wand

that had different materials attached to its end.

By virtue of using common targets the Air signal set shared two parameters of Material and

Thickness with the Free-field and Bottom sets. Angle of insonification obviously did not apply,

but was replaced by the type of Striker as the third parameter for the Air signals. The entire set

consisted of striking Brass and Steel, Thick and Thin targets with either a metal, plastic, or wood

instrument. Therefore, as in the two underwater cases, 12 classes of signals were created from

two Materials, two Thicknesses, and three Strikers.

Unlike the highly automated collection of the Free-field and Bottom signals, the Air signalsI involved more manual control. Each of the four targets was hung by monofilament from two

parallel horizontal arms on a vertical stand. The monofilament was shortened to reduce the amountI- the target could swing after being struck. A small hard-plastic wand was manufactured which

could have an end-piece screwed onto it. The end-pieces were toroidal and made of either metal,3 hard-plastic, or wood. The signals were created by striking a hanging target with the wand fitted

with an end-piece. The sounds made by striking the targets were collected using a Sennheiser 421

microphone which was attached to a Sony TCD-DIO Pro Digital Audio Tape (DAT) machine with

a Shure A95U adapter.

In order to match the 16 returns collected for the Free-field and Bottom instances, many repetitions

of the Air signals were generated. The process of manually striking a target and getting a

noise-free return was more difficult than the automatic Free-field and Bottom collection. For each

target it was empirically judged how many strikes were necessary in order to be able to get 16 final
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clean signals. Typically it required between 23 and 30 strikes to ensure a good set. The signals
were generated by striking the targets lightly at an angle in line with the microphone which was

located below and on the opposite side of the target from the Striker.

Once all of the signals were recorded on the DAT, they had to be transferred to a Macintosh and

their individual instances put into separate files. The National Instruments (NI) signal processing
package, LabView, was used in conjunction with a 16-bit NI A2100 D/A data acquisition board to

capture each signal class from the DAT with a sampling rate of 32 kHz. Although the signals were
in an audible range, they needed some processing for consistency. The signals were extracted

from the large file containing all signals in one class into separate files. During this process the

signals' initial speculars were aligned and their end points were determined by a windowed
thresholding process. The initial specular of a signal is the point at which the initial target return

energy appears. Each of the signals was padded with 1600 points at the beginning and 16000

points at the end with points which originally separated the signals in the large class file on the

DAT recording. This processing produced signals which ranged in length from 13200 and 39650
points. The extractions produced 374 separate files, each containing one Air signal.

I

I
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4.0 SIGNAL PREPARATION FOR HUMAN EXPERIMENTS

An initial experiment was run soon after the collection of the underwater signals and the initial

processing described in the Section 3 were completed. An appropriate set of signals was needed

for the experiment and the goal was to find a set that was diverse, but that could not easily be

memorized. The process required that the averaged signals at different insonifying frequencies and

numbers of sinusoid cycles be evaluated.

4.1 PILOT SIGNAL PROCESSINGI
In order to perform the evaluation the signals had to be downsampled into the range of human

I hearing which is normally between the 20 Hz - 20 kHz. For the downsampling, a linear

interpolation was performed at a 5:1 ratio of the original to the lengthened signals. The

interpolation simply involved inserting four new points linearly between each two original points.

The 10236 point interpolated signals were converted from their 12-bit original form to 16-bit

amplitudes to allow the National Instrument's (NI) D/A board its maximum range. Finally, to

prevent potential aliasing problems, a 600 point linear ramp was applied at both ends of each

signal. The resulting signals played at a 24 kHz sampling rate were 427 ms in length, with a 25

Sms ramp. The returns from the 600 kHz, 4-, 6-, and 12-cycle sinusoid insonifying pulses were

chosen as a good input set. The decision was based on overall satisfaction with the relative quality

of the signals in the 600 kHz set, and the fact that there were enough signals to hamper
memorization.

I As the main interest in the research revolved around the complication of classifying signals

containing bottom reflection, the preliminary experiment was conducted using the Bottom signals.

I The results from the experiment revealed that this set was considerably harder to classify than

anticipated and it was decided that an experiment using the Free-field signals should be run as a

benchmark. The strategy behind this change lay in the assumption that due to their relatively

higher signal-to-noise ratio, with no bottom reflection, the Free-field signals were innately easier to

I classify than the Bottom signals. The Free-field signals were evaluated, using the same processing

as described for the Bottom signals, for an appropriate set of signals to use for the experiment.

The 400 kHz, 4- and 8-cycle signals were chosen for two reasons. First, they were empirically the

best sounding signals; and second the difficulty with the Bottom signals led us to search for a

smaller, slightly less complex set.
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Further examination of the signals showed that although the Free-field and Bottom signals were

collected in a non-noisy environment, they had spurious frequency problems. Investigatior into

the matter, both by looking at and listenin2 - to the signals, revealed little scientific evidence of the

cause in the case of the Bottom signals. The Free-field signals had the spurious problems that the

Bottoms experienced, plus added interference from noise in the collection process. A computer

monitor located two feet from the oscilloscope introduced electronic noise on the connections in 'he

collection hardware. The monitor noise problem was discovered during the collection effort.

Therefore the noise was recorded, and later analyzed so it could be extracted to the extent possible

from the Free-field signals.

In preparation for removing the offending frequencies, observation of the interpolation method

revealed that aliasing frequencies were being introduced during the processing. So not only did

frequencies from noise and spurious sources need to be eliminated, but another method for making

the signalr an audible length had to be found. As the expansion of the signals was most easily

addressed by interpolation, a different algorithm was determined for it that did not introduce an

aliasing problem. The interpolation was to be done in the frequency domain which had the added

advantage that the signals would be in the correct form to be able to have any problem frequencies

extracted.

The frequency domain interpolation was performed using the following method. First an FFT was

taken of a 2048 point original signal. The resulting 2048 values consisted of, in order, the dc

offset, 1023 positive frequency amplitudes, the Nyquist frequency amplitude, and the 1023

negative frequency amplitudes in reverse order. An array of 16384 points was created to hold the

frequency interpolated values. The dc offset was copied from the original array to the large array.

The 1024 frequency amplitudes, including the Nyquist value, were copied to the large array. The

Nyquist value and the last 1023 points from the original array then were copied to the last 1024

places in the large array. Finally all of the values in the large array between the original halves of

the FFT frequencies were set to 0.0. Following the transfer of values an inverse FFT was

performed on the large array. This processing achieved the goal ef lengthening the signal without

adding unwanted frequency components.

Once the frequency domain interpolation was completed, the signals needed to be scaled. The NI

board's 16-bit capacity was filled by scaling each signal individually to the range (-32767, 32767).
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Additionally, filtering was performed on both sets of signals to remove the offending frequencies
present.

Extraction of the spurious frequencies involved performing narrow-band filtering on the frequency
domain interpolated signals. Frequency spectra of the original length signals were created and
examined to determine where the aberrant signal behavior was in the frequency content. Several
extremely narrow-band spikes were apparent in many of the signals, and it was decided that since
the spikes obviously apparently were not innately part of the signals, they could be judiciously
removed individually. The process involved determining exactly how many spikes existed and in3 what signals for both the Free-field and Bottom reflection signal sets.

Once the frequencies to be eliminated were determined, each signal was filtered individually. The
Free-field signals had both the spurious and noise induced frequencies removed while the Bottom
signals needed to have only the spurious frequencies removed. The signals were filtered after the
frequency domain interpolation was performed. During the filtering process it was important not
to interfere with the phase of the signal, so the interpolated signals were converted from rectangular
to polar coordinates, and only the magnitudes were changed. The signals were filtered below 100
Hz and above I MH- "y setting the magnitudes for those frequency bins to 0. The magnitudes for
the frequency bins affectea by the spikes were altered in one of two ways. If the spike affected
only one frequency bin, the magnitude was set to the average of the amplitude values of the3 frequency bins on either side of the affected bin. If the spike encompassed more than one

frequency bin, which was a less common occurrence, a linear interpolation of the flanking bins'
values was merformed and the bad values were replaced with the newly interpolated amplitudes.

The Free-field signals also had the monitor noise frequencies removed in the same way. The
method used provided the means for eliminating any offending frequency spikes without affecting
the legitimate frequency content of the target returns.

3 4.2 FINAL SIGNAL PROCESSING

3 The :esults from pilot experiments using the frequency domain signals described above showed
that the subjects continued to have difficulty in performing the classification task. The signal set
was revisited in an effort to identify factors which contributed to the difficulty. Signals from each

of the three collection conditions were examined and the details are presented here.
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4.2.1 Free-Field and Bottom Signal Conditions

The signal-to-noise ratio was increased to produce the cleanest possible signals for the final

experiments. It was decided that the signals created with the 400 kHz 4-cycle sinusoid

insonification would be used Instead of the averaged 400 kHz, 4- and 8-cycle insonified signals.

The decision was made so the signals used in the experiments would be as consistent in nature as

possible. However, it was necessary to avoid having a set that was so small that it would be easy

to memorize the individual signals. In answer to this concern, the individual instances rather than

the averaged signals were used in creating the training and testing sets. Each mean 0 adjusted

individual instance from each signal class was processed in the following way to produce signals

that could be used in the final experiments.

U The Free-field and Bottom signal sets were treated in principally the same way, although some of

the details for the two sets differed. Each original signal was 2048 points in length. A Fast

Fourier Transform (FFT) was performed on the signal to convert it from the time domain to the

frequency domain. The resulting FFT had a band-pass filter applied to it to eliminate the unwanted

I frequencies and increase the signal-to-noise ratio. The band-pass for a Free-field signal was 243.2-

587.9 kHz and for a Bottom signal was 229.5-587.9 kHz. Different ranges for the filters were

used due to the monitor noise present in the Free-field case which required a higher high-pass

cutoff value. Once the signal was filtered an inverse FIT was applied to convert it back to the time

3 domain.

The Free-field signals were aligned with respect to their initial specular energy to reduce the

potential acoustic cue available from the location of the onset of a signal's energy. The alignment

was performed automatically by searching for the point at which the amplitude of the signal

I exceeded 10% of its maximum. The signal was then shifted to begin 30 points prior to this

excessive amplitude. Linear ramping then was used at the beginning and end of the signals to

prevent aliasing that could be caused by the sudden offset or dropoff of energy. The 30 point shift

provided enough points to apply an increasing linear ramp to the first 25 points while the last 5

points ensured that any minor portion of the specular was inc aded, but not ramped. The end of

the signal had a decreasing linear ramp applied to it as well. The end ramp was started at different

points for the signal classes, depending on where the energy for :he signal fell to noise levels. The

classes and the points where the ramp was started are listed in Table 4.2.1-1. The ramp continued
past the points listed in the table for a total of 100 ramped points in each signal.
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Signal Class Starting Point of End Ramp
B10 550
B14 700
B 19 500
B50 550
B54 700
B59 500
S10 500
S14 700
S19 500
S50 600
S54 700
S59 500

Table 4.2.1-1 Signal Classes and their Initial Ramping PointsI
The Bottom reflection signals did not require that an alignment be performed. The first 25 points
of the signals were increasingly linearly ramped, again to avoid any potential aliasing problems.

The signals also were decreasingly ramped in the same manner as the Free-field set. Here the

linear ramp started at point 1730 in each of the signals, and continued for a total of 100 points.

The remaining processing was identical for both sets of signals. The aliasing problem discussed

earlier caused by linear interpolation of a signal was resolved by performing what could be referred

to as a frequency domain interpolation. The principle here was to increase the resolution of the

signals without altering their frequency spectra. To do this, an FFT was taken of a 2048 point

signal. The resulting 2048 values were the typical output from an FF1 routine. They consisted of,

in order, the dc offset, 1023 positive frequency amplitudes, the Nyquist frequency amplitude, and

the 1023 negative frequency amplitudes in reverse order. An array of 32768 points was created to
hold the frequency interpolated values. The dc offset was copied from the original array to the
large array. The 1024 frequency amplitudes, including the nyquist value, were copied to the large

array. The nyquist value and the last 1023 points from the original array then were copied to the

last 1024 places in the large array. Finally all of the values in the large array between the original

halves of the FFT frequencies were set to 0.0. Following the transfer of values an inverse FFT

was performed on the large array. This processing achieved the goal of increasing the number of

points in the signal without adding unwanted frequency components. Once the frequency domain

interpolation was completed, the only remaining issue was scaling. To take full advantage of the
range of the NI board's 16-bit capacity, each signal was scaled individually to the range (-32767,
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32767). The resulting signals were then in good condition to be used in the psychoacoustc

experiments.

1 4.2.2 Air Signal Condition

I The description of the collection of the Air signal set in Section 3 reveals that the Air signals

required relatively little processing in order to prepare them for use in the experiments. The
signals, audible to humans by default, were sampled at 32 kHz and could be played at 32 kHz over
the A/D board, so no sampling changes were needed. They were also already a suitable length for3 human subjects, so the duration of the signals did not need alteration. Custom software written

with the D/A board's LabDriver library of functions was used to listen to each return in a signal
class to determine a set of 16 clean, consistent signals to use for each class in the experimenL The

signals were chosen based on the clarity and quality of the return. Since the insonification of the

targets was not automatic, it was important not to include any signal which contained artifacts that

were not part of the return energy. A set of 96 signals was selected, 12 classes by 16 instances,
where half was used for the training set and half for the testing set for the experiments. The

hardware setup used for listening to the signals was identical to that used in the psychoacoustic

experiments and is described in Section 5.
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5.0 HUMAN ACOUSTIC CLASSIFICATION EXPERIMENTS

The acoustic signals described in the previous sections were used in psychoacoustic experiments

which were conducted on one sonar-experienced and one novice set of human subjects. The

sessions of the experiments were run in a laboratory setting over the course of several weeks.

There were three conditions for the experiments, one for each of the Free-field, Bottom reflection,

and Air signal sets. The experiment was conducted in the same manner for all conditions and for

both subject groups, with only the data being changed. Each condition required that subjects

participate in seven training sessions and one test session.I
5.1 CLASSIFICATION TASK

K The experiment task involved listening to and classifying a set of signal returns. The three

parameters to be classified for each target were Material, Thickness, and either Angle or Striker,

depending on whether the signals were from the underwater or air environment respectively. As

described earlier in the Section 3, the target material was steel or brass, and the shell thickness was

either "Thin" (5% of the exterior diameter of the shell), or "Thick" (10% of exterior diameter). The

Free-field and Bottom targets were insonified at three angles with respect to the beam of the pulse:

900 (broadside), 45', and 00 (along the axis of the target). However, Angle did not apply in the

case of the Air signals. These targets were excited by strikers with tips made of metal, plastic, and

wood. Each of the three parameters was identified for all signals presented in the experiment.

5.2 HARDWARE

The experiment required a variety of hardware components. The instruction screens were shown

and the subjects' responses saved on a Macintosh HIsi computer. The signals were played using a

National Instruments (NI) A2100 A/D board located in the lIsi. The NI board was attached to an

NAD 7225PE receiver used for amplification and volume control. The subjects then heard the

sounds through Sennheiser HD 250 linear headphones.

5.3 INPUT DATA

The signals used in the Free-field and Bottom conditions of the final experiments were the 400

kHz, 4-cycle sinusoid returns. They were played for the subjects at a sampling rate of 16 kHz.
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The Air condition experiments used returns from the Air signal set played at 32 kHz. The

difference in the sampling playback rates stemmed from the innate difference between the signal

conditions. The Free-field and Bottom signals were played at the slowest rate on the A/D board to

expand them as much as possible. This rate was judged empirically to provide the most

opportunity to gain information from the signals. The Air signals' original capture sampling rate

was 32 kHz, so that was what was used for playing these signals for the subjects.

Signals for the three conditions were divided into training and testing sets, each made up of eight

of the individual instances for each of the 12 signal classes. The training set of instances 1-8 was

used for each of the seven training sessions, while the testing set of instances 9-16 was reserved

for the test session. Three instances from each class in the training set were chosen randomly for

each of the training sessions for each subject. In addition, each training session had a different

randomization of 36, of a possible 96, signals presented. During the test session, however, all 96

signals from the testing set were randomly presented.

5.4 SESSIONS

The first session included an orientation portion that was not included in the remaining sessions.

First this involved the subject's acclimation to the manner in which the experiment interface

worked. Second, and more importantly, the subject was presented with a random sample of the 36

of the signals used in the sessions, where three signals were from each class. During this

presentation the subject was not required to make any classification judgments. After the

orientation the subject went on to the main task of listening to and classifying the parameters of

each of the signals presented. The second through seventh training sessions and the test session
included only the main portion of the first session where the signals were actually classified. The

classification process itself is described next.

The experiment sessions were presented on a Macintosh Ilsi with a graphical user interface for the

instruction screens. An A/D converter board, a stereo receiver and headphones, all described

* above, were used for playing the signals. The subjects read the screen for instructions and used

the mouse to make selections via buttons on the screen. Examples of the screens are shown in
Figure 5.4-1. The subjects were allowed to adjust the volume and balance, but no other controls,

on the receiver at any time during the sessions.
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Fihgure l(a)

CLASSIFICATION EXPERIMENT

MATERIAL THICKNESS ANGLE OF
OF SHELL OF SHELL INCIDENCE

(a Steel 0 Thin 0

0 Brass * Thick * 450

00

Use radio buttons to select parameters

1
PLAY AGAIN

Figure 1(b)

CLASSIFICATION EXPERIMENT

MATERIAL THICKNESS TYPE OF
OF SHELL OF SHELL STRIKER

0Steel O Thin 0 Metal

0 Brass ( Thick * Wood

*0 Plastic

Use radio buttons to select parameters

Figure 5.4-1 Classification Experiment Screens
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In the classification portion of the sessions the subject could listen to each signal as many times as

desired. To guarantee that the signal was heard at least once, it was played automatically before

any parameter choice was allowed. After making selections for each of the three parameters the
subject clicked a button to continue to the next s~gnal. At this point in the training sessions the

subject received feedback as to the correct parameters for the current signal, and heard that signal

played again. The signal could be played even more times at this point, or the subject could choose

to go to the next signal. In the test session, however, the subject's choice to continue brought up
the next signal without feedback or hearing the current signal. Feedback was assumed to promote

further learning, so it was eliminated from the test sessions. The purpose for the difference was to3 test the subject's knowledge of the characteristics learned about the signals during the training

sessions.

H During all sessions the subject's responses for the parameters were recorded and stored. The data

stored for each subject for each session included the randomization order of the signals, the

subject's responses to the individual parameters for each signal, and whether the subject was
correct on all three parameters simultaneously. The data in these fdes were used in the analysis of
the human's classification performance and strategies detailed in the following sections.
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I 6.0 RESULTS OF PSYCHOACOUSTIC EXPERIMENTS

The performance data from two subject groups and three signal conditions are presented here.

Subjects with and without sonar experience were tested, to see if that experience was correlated

with any performance differences in the classification task.

6.1 EXPERIMENT SUBJECTS

As mentioned earlier, two sets of subjects, one with and one without sonar experience, participated

in the acoustic experiments. The subjects with experience were sonar technicians from the United

States Navy who were recruited by Dr. David Kobus from the Naval Health Research Center

(NHRC) in San Diego, California. They ranged in age from 24 to 39 and their sonar experience

varied from 3.5 to 14 years. Ten sonar technicians participated in the experiment where each

subject ran the eight sessions, seven training and one test, for each of thc three signal conditions.

The subjects were randomly assigned an order of conditions from a counterbalanced schedule.

The purpose was to minimize any possible order effect that might occur in the subjects'

performance. The condition order and two personal statistics for the group are shown in Table

6.1-1. Although the conditions were counterbalanced for the group, any order effect that may have

occurred did not adversely affect the results since comparing the performance for the two groups
was not a main goal of the study.

Subject Week 1 Week 3 A Years Sonar
Experience

I B A F 39 3.5
2 A F B 33 8
3 A B F 33 7
4 B F A 26 7
5 B F A 34 12
6 A B F 33 7
7 F B A 32 14
8 A F B 24 5.5
9 F A B NA 7
10 F B A NA 6

Table 6.1-1 Counterbalanced Condition Randomization and Experience for Navy Subjects

For each signal condition, all eight sessions were run in one week. Generally, one to two training

sessions were run per day. On the last day at least one training session was scheduled, followed

I
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by the test session. This guaranteed that the subject's memory of the signals was refreshed before

the test session was executed. The two remaining conditions then were run in subsequent weeks.I
The inexperienced subjects were students at the Catholic University of America in Washington,

D.C. who ranged in age from 18 to 22. The students were run as a pilot group so each student rai

the eight sessions for only one signal condition of the experiment. There was a total of four

student subjects per condition, with 12 students completing the sessions. Since the students did

not participate in a counterbalanced randomization of all conditions, the condition for each subject

was chosen based on the primary goal of getting four subjects to complete the experiment for each

condition. The sessions for the students were scheduled in the same way as for the experienced

subjects with all ses;sions being performed within one week's time. Again, at least one training

session was administered on the last day prior to the test session.

6.2 SUBJECT PERFORMANCE

Subject performance varied considerably across the three conditions, as expected from the pilot

experiments. Performances are considered statistically above chance at the 5% level if they exceed

the values given in Table 6.2-1. These figures are derived from a grouped t-test.

Material Thickness An i-ker Overall
Chance 50 50 33 8.33
Training Session 67 67 52.77 25
Test Session 61 61 43.75 16.67

Table 6.2-1 Chance and Statistically Above Chance Percentages for Different Experiment Sessions

6.2.1 Free-Field Results

The performances of the subjects on the final test session of the Free-field experiment are shown in

Table 6.2.1-1. These data are graphed for the student subjects in Figure 6.2.1-1 and for the Navy

subjects in Figure 6.2.1-2.I
There is little evidence that any subjects were able to distinguish Material or Thickness. Only one

subject in each group had a Thickness test score significantly above chance, and there were no

Material test scores above chance. Thirteen of fifteen subjects were able to discriminate Angle at

levels significantly above chance. Casual listening suggests that it is easiest in the Free-field data
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m to identify 900 signals, due to their short duration. A subject who had learned to discriminate the

900 signals from others, but could not tell 450 signals from 0' signals, would be expected to have

near a 0.67 performance level. Navy subjects 3, N3, and 4, N4, learned to discriminate many of

the 450 and 0' signals as well, since their scores are both near 0.90 correct. Two other Navy

subjects are also above the 0.67 level, indicating some knowledge of the 00 and 45' signals. The

bulk of the subjects, however, were unable to learn more than the characteristic of the 900 signals.

In several cases the higher performance on Angle was enough to make the overall classificationI performance statistically higher than chance. Figure 6.2.1-3 shows the Navy subjects'

performances by session, averaged across all subjects.

CATHOLIC

----- Material Thickness A Overall
7 0.57 0.64 0.71 0.28
9 0.47 0.59 0.79 0.29
11 0.52 0.60 0.51 0.16
19 0.52 0.53 0.64 0.18

Mean 0.52 0.59 0.66 0.23
Std Dev 0.04 0.04 0.12 0.07

NAVY

Subject Material Thickness Anle Overall
7 0.59 0.54 0.71 0.26
11 0.57 0.47 0.30 0.06
10 0.49 0.53 0.61 0.13
9 0.57 0.54 0.31 0.11
2 0.42 0.56 0.47 0.15
8 0.55 0.59 0.80 0.29
4 0.53 0.67 0.89 0.30
5 0.51 0.44 0.67 0.11
3 0.44 0.45 0.91 0.21
1 0.55 0.51 0.83 0.216 0.52 0.54 0.69 0.28

I Mean 0.52 0.53 0.65 0.19
Std Dev 0.06 0.07 0.21 0.08I

Table 6.2.1-1 Free-Field Test Session Performance for Both Groups of Subjects

U These curves indicate that little learning took place after the first session. When the three

parameters are considered separately for the first seven sessions for both sets of subjects, the
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scores for the first session are significantly lower than for subsequent sessions. This is the only

significant learning effect

1.00

m 0.80

e 0.60
U
I 0.40

I 0.20

0.00
1 2 3 4 5 6 7 Test

-- Session

I Material - Thickness - e All

Figure 6.2.1-3 Free-Field Performance by Session, Averaged for All Navy Subjects

Students do not perform statistically differently than Navy subjects on the Free-field test. This

applies to all three parameters individually as well as overall scores. Angle scores are significantly

higher, as expected from casual listening.

1 6.2.2 Bottom Results

The performances of the subjects on the final test session of the Bottom experiment are shown in

Table 6.2.2-1. These data are graphed for the student subjects in Figure 6.2.2-1 and for the Navy

subjects in Figure 6.2.2-2.

The Bottom experiment also proved quite difficult. Of all 14 subjects, only one had a test score

significantly above chance on Thickness, while two scored significantly above chance on Material.

As with Free-field signals, these parameters are very difficult to distinguish.

I
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I CATHOLIC

SMaterial Thickness An "1 Overall
7 0.49 0.50 0.69 0.13
9 0.57 0.56 0.61 0.24
11 0.65 0.55 0.77 0.27
20 0.56 0.46 0.47 0.16

Mean 0.57 0.52 0.64 0.20
Std Dev 0.06 0.05 0.13 0.07

NAVY

I Su•.. Material Thickness A Overall
4 0.67 0.59 0.68 0.35
5 0.35 0.47 0.71 0.15
1 0.52 0.52 0.65 0.17
6 0.60 0.65 0.94 0.41
7 0.52 0.51 0.78 0.25
3 0.51 0.44 0.96 0.21
10 0.49 0.48 0.75 0.18
2 0.46 0.53 0.70 0.22
8 0.60 0.50 0.73 0.26
9 0.48 0.53 0.35 0.07

Mean 0.52 0.52 0.72 0.23
Std Dev 0.09 0.06 0.17 0.10

Table 6.2.2-1 Bottom Test Session Performance for Both Groups of Subjects

Thirteen of fourteen subjects discriminated the Angle of the Bottom signals at levels above chance.

As with the Free-field signals, 900 signals are relatively easy to identify. They contain a transient

which stands out from the bottom reflection to the casual listener. If a subject could only tell 90'

signals from the other angles, 0.67 performance would be expected. Two of the Navy subjects

performed very highly on Angle, at levels of 0.94 and 0.96. Clearly these two subjects could tell

0' signals from 450 signals as well as identifying the 900 signals.

Eight Navy subjects and two student subjects scored significantly higher than chance during the

test session for the parameters overall, i.e. as a sim-ltaneous group. This performance is

attributable to the high performances on Angle. The Navy subjects' average performance across

the sessions is shown in Figure 6.2.2-3. The high performance on Angle is apparent, and Angle is

the only parameter that shows an increase in performance across the sessions.
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I Figure 6.2.2-3 Bottom Performance by Session, Averaged for All Navy Subjects

I Analysis of normalized data from the test sessions shows no significant differences between the

two groups of subjects on any individual parameter for the Bottom signal condition. When the
subjects' performance on the three parameters is considered over the seven training sessions, Navy

performance is not significantly higher than student performance. The higher performance of the
Navy group on Angle cannot be considered significant at p=0.06 54 . Significant learning effects

are noted between session one and sessions four, five, and six when all subjects are considered.

U Although the Navy subjects do not perform significantly higher than the students when the

individual parameters are considered over the training sessions, when the 'Overall' performance is

considered the Navy subjects did perform significantly higher. The Angle parameter, although not

significantly higher for Navy subjects than students, is the only contributing factor to the

significantly higher performance Overall. This difference is apparently due to the ability of two

Navy subjects to discriminate 00 and 450 signals as well as 900 signals.I
6.2.3 Air Results

Performance results for both subject groups on the Air signals are shown in Table 6.2.3-1, and

graphed in Figures 6.2.3-1 and 6.2.3-2.
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* CATHOLIC

Subjec Material Thickness Overall
12 0.53 0.74 0.38 0.17
14 0.56 0.65 0.40 0.11
15 0.95 0.93 0.45 0.43
17 0.79 0.51 0.41 0.18

Mean 0.71 0.71 0.41 0.22
Std Dev 0.17 0.15 0.03 0.12

3be Material Thickness A 1 Overall

2 0.49 0.80 0.44 0.18
8 0.70 0.79 0.54 0.29
6 0.68 0.78 0.59 0.30
3 0.60 0.65 0.58 0.26
4 0.86 0.83 0.59 0.46
1 0.63 0.70 0.34 0.13
9 0.49 0.85 0.47 0.18
5 0.59 0.77 0.44 0.17
7 0.92 0.84 0.46 0.36
10 0.85 0.82 0.43 0.35

Mean 0.68 0.78 0.49 0.27
Std Dev 0.15 0.07 0.09 0.11

Table 6.2.3-1 Air Test Session Performance for Both Groups of Subjects

3 Performance on the Air signals is relatively high compared to performances on the underwater

signals. Unlike in the underwater condition, subjects found Material and Thickness relatively easy

to discriminate. Two of four students performed significantly higher than chance on Material

during the test session, as did six of ten Navy subjects. Three students were higher than chance on
Thickness, as were all ten Navy subjects. One student performed higher than chance on Striker,

while eight Navy subjects did so. Three students and nine Navy subjects were correct on all

parameters (Overall) in the test session more often than chance performance would indicate.

Figure 6.2.3-3 shows the average performances of the Navy subjects over the course of the

sessions.
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The high performances on Material and Thickness stood ouL Also there was an apparent learning

effect over the sessions, with a substantial increase in performance at the fifth session. Eight of dte
ten Navy subjects increased their performances from the fourth to the fifth sessions.

1 1.00

S0.80

Q 0.60

I 0.40

C 0.20
I ~ ~~0.00 •.,..

1 2 3 4 5 6 7 Test

* Session

-*- Material -4- Thickness - Striker - - All

3 Figure 6.2.3-3 Air Performance by Session, Averaged for All Navy Subjects

I When the normalized data are analyzed for differences in performance, the test sessions show no

significant differences on any parameter between student and Navy subjects. It would appear that
the quantity of data from the test sessions is insufficient to overcome the variability of the data, and

find the higher performances of Navy subjects on Thickness and Striker significant. Nor are the3 Navy subjects significantly higher when considering data from all three parameters simultaneously.

6.2.4 Comparison of Navy and Student Subjects

A different picture emerges when we considered the training sessions rather than the test sessions.
Considering only training sessions we examined the data for effects of subject group (Navy or

student), session (excluding the test), and parameter. The Navy subjects performed significantly

higher than the student subjects when considering all parameters simultaneously. Breaking this
difference down by parameter, Thickness and Striker appear to be the contributing parameters, as3 shown in Figure 6.2.4-1.
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Figure 6.2.4-1 Average Navy vs. Student Subjects' Performance By Parameter

There is no significant difference between the performance of the two subject groups on Material.
The difference on Thickness is also not significant (p=0.0577). The Striker difference however is

quite significant (p--0.0001) with the Navy subjects higher.

I There is also a significant learning effect between certain sessions. There are significant increases
in performance between the sessions in Table 6.2.4-1.I

Session Higher Performance Sessions
1 3,5,6,7
2 5,6,74 5,6,7

I Table 6.2.4-1 Performance Increase Across Sessions Per Individual Parameter

I
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Finally we examine the data concerning performance on all parameters simultaneously, that is,

getting all three parameters correct ("Overall"). Here, again, we see a significant difference

between the two subject groups with the Navy group performing higher than the student group.

That is, the Navy subjects more often correctly identified all three parameters simultaneously than

did the students. There were also significant differences between the performances on certain

sessions. These data are shown in Table 6.2.4-2.

I Session Higher performance Sessions

1 5,6,7

2 5,6,7

3 5,6

4 5,6,7

Table 6.2.4-2 Overall Performance Increase Across Sessions
A plot of performances by subject group and session illustrates these differences, as seen in Figure

6.2.4-2.
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I
U 9-
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I Figure 6.2.4-2 Average Navy vs. Student Subjects' Performance By Session
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The differences between the Navy and student subjects emerged as the aural discrimination task
became less difficult. The Free-field and Bottom tasks were extremely difficult, affording little
information on which to make any discrimination. What information was present in those signals
was relatively obvious to most listeners, and was detected by both subject groups. Nevertheless,

two Navy subjects were able to extract enough information from the Bottom signals to discriminate

between 0' and 450 signals. This is a task it is reasonable to assume no other subjects were able to
perform. When the easier task of classifying Air signals is presented, differences between the two
populations emerge. The Navy subjects are presumably better at ixtracting the information present
in these signals, as long as there is enough information with which to work.I
6.3 DISCUSSION

The performance results corroborate earlier pilot results as well as the impressions of the casual

listener that the underwater signal classes are very difficult to distinguish from one another. The

difficulty of the tasks suppressed most potential differences between the subject groups, although
the Navy group performed significantly higher over the training sessions of the Bottom condition3 when all parameters were considered simultaneously.

The Air signal classes proved more distinct to the subjects, as the performance figures indicate. At

this difficulty level more performance differences between the subject groups are significant.
When considering the training session data, Navy subjects had higher performance than student

subjects on the Striker parameter. The difference on the Thickness parameter was almost
significant, while performances on Material were almost the same. When the three individual

parameters are considered as a group, Navy subjects performed significantly higher. Navy
subjects also performed better than the student group in correctly classifying the three parameters

I simultaneously.

I
I
I
I
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7.0 SCALING

The results from the psychoacoustic experiments were analyzed using the ALSCAL

multidimensional scaling model. Multidimensional scaling (MDS) is a statistical technique for

discovering the pattern or structure contained implicitly in a set of data, and tor representing this

structure in a geometrical form. ALSCAL uses an alternating least squares procedure to determine

the configuration of objects in multidimensional space which minimizes a goodness-of-fit measure.

In the case of this research the "objects" were acoustic signals and the data presented to the MDS

algorithm were the confusion matrices containing the subjects' judgments of the signal parameters.

Complete descriptions of the MDS algorithms can be found in Young and Harrisi and Young and

Hamer 2.I
Multidimensional scaling was used as an analysis tool for deriving features of the signals from the

human judgment data. Scaling produced dimensions which reflected the similarities and

differences found in the subjects' confusions when classifying the signals. Observation of the

distribution of the signals on the dimensions provided insight about the signals and which

parameters were easier or harder for subjects to identify. Signals that were similar, in the
perception of the subjects, were found in close proximity to one another while the opposite was

true for dissimilar signals. Each dimension revealed different ways in which the signals were
grouped, and presumably different features of the signals. Combinations of the placement of

signals on the separate dimensions could be used to discern the features important in classifying the

signals and their separate parameters of Material, Thickness, and Angle/Striker. These issues are

explored in the remainder of the session as the scaling methods and solutions are detailed.

7.1 SELECTION OF SUBJECTS AND SESSIONS

Of the ten NHRC subjects who completed all sessions for each of the three signal conditions, three

were chosen as the best performers for each condition. The test session results for three "Best"

subjects, chosen on the basis of their test session performance as well as on their high performance

for the parameters of greatest interest in the subsequent analyses, were used as input for one set of

scaling runs. Subjects 4, 6, and 8 were used for the Free-field scaling runs; subjects 3, 4, and 6

for the Bottom; and subjects 4, 7, and 10 for the Air. Their test session performance levels, and

chance levels for the test sessions were seen in the Tables and Figures throughout Section 6.
Another set of runs was performed for each condition for the single subject who had the highest
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overall session performance. For the Free-field and Air cases subject 4 was the top performer; but

for the Bottom condition subject 6 was best. Three training sessions and the test session were

used in each of the scaling runs for the single top performers. The sessions included in the runs,

the performance levels for those sessions, and the chance levels for the training and test sessions

are listed in Table 7.1-1. The following is a discussion of creation of the scaling solutions based

on this data, the solutions' dimensions and the signals' distribution along them, and the subject

weights and their implications from the individual differences scaling model run on the data. For

simplicity, the NHRC subjects included in these runs will be referred to as Nx where x is the

subject number.

7.2 SCALING INP!UT

During sessions of the experiment subjects made judgments as to the Material, Thickness, and

Angle or Striker parameters for each signal presented. These responses were used as the basis for

the input data to the scaling algorithms. The data were tallied in a way in which they could be

viewed as similarity measures of the signals. In other words, each instance of a signal being

confused with a different signal (i.e., an incorrect classification) contributed to the summation of

the number of contusions of those two signals, and thus the two were assumed to be similar to

each other. Since the scaling algorithms give more stable solutions using matrices of dissimilarity

ratings, the data were converted into dissimilarities to be used as input.

To create a matrix of dissimilarity data the similarity ratings for each session first were collapsed

into matrix form. Each matrix was 12x12 where the rows represented the actual signal classes and

the columns the judged signal classes. For instance, if a subject heard an instance of a Brass 10%

20' (B 19) signal and identified it as a Brass 5% 900 (B59) signal, then the B 19 row, B59 column
was incremented by one. After all of the signals for one session were tallied, the matrix contained

the ways in which the signals were confused by the subjects. The similarity ratings in the matrices3 then were converted to dissimilarity ratings. The conversion was performed by subtracting each

element in the matrix from the maximum total possible per element. In the case of the training3 sessions, the maximum was three because three instances of each signal class were presented. In

the same vein, eight was the maximum possible for each test session. Each matrix filled with

dissimilarity data was folded to make a lower triangular matrix that was used as input to the scaling

algorithms. An example of the input matrix created from the test session results from N4 for the
Air signal condition is shown in Table 7.2-1.
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BEST FREE-FIELD
Suhic Mateiial Thickness Afnil All

N4 53.13 66.67 88.54 30.21
N6 52.08 54.17 68.75 28.13
N8 55.21 59.38 80.21 29.17

BEST BOT'TOM
SMaterial Thickness An"l! All

N3 51.04 43.75 95.83 20.83
N4 66.67 59.38 67.71 35.42
N6 60.42 64.58 93.75 40.63

BEST AIR
£ubje Material Thickness Striker All

N4 86.46 83.33 59.38 45.83
N7 91.67 84.38 45.83 36.46

N10 85.42 82.29 42.71 35.42

N4 FREE-FIELD
Session Material Thickness Annge All

3 63.89 58.33 91.67 38.89
4 58.33 61.11 91.67 36.11
6 55.56 55.56 100.00 36.11

Test 53.13 66.67 88.54 30.21

I N6 BOTrOM

Subjec Material Thickness Angle All
2 50.00 55.56 75.00 22.22
4 61.11 55.56 83.33 38.89
7 47.22 41.67 88.89 25.00

Test 60.42 64.58 93.75 40.63

N N4 AIR
Subje Material Thickness Striker All

5 88.89 75.00 72.22 52.78
6 80.56 88.89 66.67 52.78
7 88.89 72.22 58.33 41.67

Test 86.46 83.33 59.38 45.83

Chance Material Thickness Angle/ All
Striker

50.00 50.00 33.33 8.33
Statistically Training Sessions 67.00 67.00 52.77 25.00
Significant Test Session 61.00 61.00 43.75 16.67

Table 7.1-! Best and Top Performer's Performance and Chance Levels for Sessions in Scaling Runs
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S5M SH £5W SIM SI SLXY 1M L2 B5YL DIM RJR BIW
S5M 4 0 0 0 0 0 0 0 0 0 0 0
S5P 16 16 0 0 0 0 0 0 0 0 0 0
S5W 15 12 8 0 0 0 0 0 0 0 0 0
SIM 15 15 16 4 0 0 0 0 0 0 0 0
SIP 16 14 16 16 6 0 0 0 0 0 0 0
S1W 15 11 13 16 15 10 0 0 0 0 0 0
B5M 15 16 15 16 16 16 10 0 0 0 0 0
B5P 16 16 15 16 16 16 15 6 0 0 0 0
B5W 16 15 16 16 16 16 7 14 8 0 0 0
BIM 15 16 16 16 15 16 15 16 16 8 0 0
B1P 16 16 16 16 13 15 16 16 16 15 14 0
BIW 16 15 16 16 15 15 16 16 16 14 12 10

Table 7.2-1 Lower Triangular Dissimilarity Matrix for Air Subject N4

7.3 INDIVIDUAL DIFFERENCES MODEL

U The individual differences scaling (IDS) model was chosen to create the multidimensional solutions

for the six sets of input data for the top performers described above. The model used a weighted

Euclidean distances measure to produce a non-rotatable space in which the placement of the signals
was the best fit for all subjects' confusions. The IDS model, unlike other scaling algorithms,

produces axes which may not be rotated after the solution is found. This means that the

dimensions can be directly interpreted, given the assumption that the scaling model describes the

data accurately3.

* 7.3.1 Scaling Model

The IDS model took as input matrices of symmetric, dissimilarity data. The Best overall session

performers' data were run as matrix conditional, while the single top performers' data were run
with an unconditional restriction. The matrix and unconditional indicators simply dictated the way3 in which responses from matrix to matrix in the input set were treated by the algorithm. N1rnbers

were treated as equal only within matrices for matrix conditional, while the same number was
treated equally across matrices for the unconditional condition. For instance, a total of 2 in a

matrix for top performer N4 in the Free-field condition was not necessarily the same as a 2 from

N6. However, N4's response of 2 in a matrix for the third training session was seen as equal to a
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2 in his fourth training session's matrix. The unconditional assumption allowed the scaling

algorithm to account for more of the variance in the data. The remainder of the settings for the
scaling runs were equal for all subject sets. Solutions were created for two to five dimensions,

where one n-dimensional set of data was chosen for analysis.

I Although only one set of dimensions was produced per solution, this scaling method allowed for

the subjects to use the dimensions differently from one another. In other words, if there were three3 dimensions provided by the solution, each of the subjects could use the dimensions to a greater or

lesser degree than other dimensions or other subjects. The variation of the individual use of the

dimensions was represented by a subject weight for each dimension in the solution. Overall
measures were also provided by the solution which indicated how the subjects as a group used the

* individual dimensions.

7.3.2 Subject Weights

For a three-dimensional solution, the subject weights were treated as the coordinates in 3-space of
a vector with its origin at (0,0,0). The vectors from each of the subjects could then be viewed

relative to one another. It was important to look at the weights as vectors, not as raw weights due

to the way in which they are computed by the IDS method. A comparison across subjects of their
individual raw weights is not valid, but of the vectors defined by those weights is. For instance, if

the weights for two subjects represent points far from one another but along the same vector from
the origin, those subjects used the dimensions with the same relative weighting. For the

comparison, a method was devised to convert the raw dimension weights to vectors. The vectors

could then be compared directly to obse, ve how the subjects used the dimensions differently.

The best method for comparison was derived from knowing the angles from a given subject weight

vector to each dimension axis in the solution space. The basis of the angles was the vector
Sproduced when the subject weights for dimensions 1, 2, and 3 were treated as the coordinates on

the x, y, and z axes. In order to compute an angle, the xyz coordinate from the vector was used in

conjunction with each axis individually, and the (0,0,0) point of origin, to form a plane in space.

The axis of interest was assigned a point 1 unit from the origin to use as its coordinates. For
example, if the angle from the vector to the x axis were desired, the point used on the x axis was

(1,0,0). The law of cosines, in Equation 1, was applied to the three points in the plane, and the
angle from the subject weight vector to that axis of interest was computed. This was repeated for
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3 each of the other two axes, giving three total angles which then were compared to each other and io
other subjects' angles.

(1) a2 = b2 + c2 -2bc cosA

where: A is the angle between the vector and the current axis; and a, b, and c are the origin,
unit point on the axis, and endpoint of the vector, respectively.

The subjects' dimension weights angles directly related how each subject used the three

dimensions, where a small angle indicated that the dimension was used substantially and a large

angle that it was used less. A vector with equal weights had angles of 54.736' to each of the axes,

i and thus to the dimensions. A comparison of the subjects weights' angles to the equal weights'

angles shows how far the subjects deviated from an "equal" use of the dimensions, and

consequently how much the subjects used the dimensions. For instance, the angles for N3 from

the Best Bottom solution, shown in Table 7.4.2-1(a), show that dimensions I and 2 were used to

almost the same degree in classifying the signal parameters, and were close to the equal use, while

dimension 3 was used to a much smaller extent. In contrast, N4 used dimension 1 highly, but

dimensions 2 and 3 much less. As is shown in these examples, the observation of the angles

across subjects and dimensions was a convenient means of discerning the extent to which subjects

within one individual differences scaling solution used the dimensions produced.

Another set of measures produced by the scaling solution included a weirdness level for each

subject. The weirdness indicated how much the subject's use of the set of dimensions varied from

that of the "typical subject." The typical subject's vectors were based simply on the average of the

subject weights for all subjects in the solutions. For the weirdness measures to be computed the

typical subject's vectors were normalized to orient them along the equal use vectors at 54.7' from

the dimensions. The subjects' weight vectors were then normalized in the same manner, and the

weirdness index for each subject was computed.

i The individual differences model also gave a measure of the relative importance of the dimensions

within each solution, which together provided an overall measure of the variance in the original

data accounted for by the solution. Given more dimensions, and therefore more parameters, the

scaling algorithm could account for more of the variance in the data. In this case, three dimensions

I were chosen as sufficient to account for the variance in the data for the Free-field, Bottom

reflection, and Air data conditions while producing a reasonable number of dimensions for
I analysis.
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7.4 SCALING RESULTS

Two groups of matrices were used as input to the scaling runs for the Free-field, Bottom and Air

signal conditions; one consisted of the three test sessions from the Best performers, and one of the

overall top performer's three best training sessions plus the test session. The two sets of

dimensions produced by the scaling runs for each of the three signal conditions are illustrated and

described here. Subject weights which reflect the use of the dimensions in each solution,

weirdness measures which show the amount of variance accounted for by each dimension, and the

overall importance of the dimensions to the subjects are also detailed here. The dimensions

discussed here are related to acoustical measures of the signals and to neural network nodes in

* Section 10.

7.4.1 Free-Field Condition

The Free-field condition's two sets of scaling dimensions are displayed in Figures 7.4.1-1 and

I 7.4.1-2. The coding scheme for the signals in the dimension figures here and throughout this

section is as follows. The initial letter represents a material of 11rass or Steel and the next digit
represents a thickness of 10% or 5%. The last character represents either an insonification angle of

200, 450, or T0 for the underwater signals or a striker type of Metal, Plastic, or Wood for the Air
signals. For example, B10 stands for a target which is brass with a shell thickness of 10%, and is

at 0' relative to the transducer. The subject weights for each of the dimensions, shown in Table

7.4.1-1, were an indication of how much the subjects used the dimensions in each session

included in the solution.

3 Five of the six dimensions in the two Free-field solutions break down by Angle to differing

degrees. It is particularly interesting to note that Angle is the only parameter that separated readily3 on any of the dimensions. The first dimensions for the Best three and single best performers

separated the 900 signals from the rest. The fact that this occurred on the first dimension where the

overall importance level ranged from 0.49 to 0.57 indicates that it was by far the easiest distinction

for the subjects to make during the Free-field experiment sessions. The second dimension, which

accounts for the next largest amount of variance with importance levels of 0.13 and 0.19, cleanly

separates all three Angles, with the single exception of the S54 signal class. The third dimension

for N4 also separates the three Angles has an importance rating of 0.17. The exception is the3 signal class S50 which is widely misplaced at the opposite end of the dimension from other 0'
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signals. The third dimension for the Best performers, however, did not obviously distinguish any

parameter. This dimension also accounted for the lowest level of variance of any of the

dimensions. The clustering of the 901 signals in five of the six dimensions points out bow similar

they sounded to all of the Free-field subjects. Remember that close proximity on a dimensions is

an indication of a high degree of confusion. Signals separated by Angle along a dimension,

therefore, means that at least some subset of the subjects tended to confuse signals of one angle

more with one another than with signals of other angles.

FREE-FIELD

Table 1(a) Best
~~Subject Weights nk

Subject Dim I Dim2 Dim3 Q Dim2 Dim3 Weirdness
N4 0.704 0.432 0.173 33.46 59.22 78.15 0.306
N6 0.682 0.118 0.371 29.75 81.33 61.79 0.435
N8 0.704 0.421 0.309 36.59 61.27 69.36 0.113

Overall DimI Dim2 Dim3
Importance 0.485 0.126 0.088

Table 1 (b) N4

Subject Weights Angle

Session Dim. Din2 Dim3 r Dim Dim2 Dim3 Weirdness
3 0.100 0.057 0.063 40.30 64.37 61.26 0.093
4 0.103 0.071 0.037 38.02 56.83 73.57 0.229
6 0.099 0.080 0.040 42.10 53.13 72.61 0.251

Test 1.500 0.855 0.827 38.41 63.48 64.41 0.026

Overall DimI Dim2 Pima
Importance 0.570 0.186 0.173

Table 7.4.1-1 Free-Field Scaling Solutions' Usage Measures for Best and Single Top Performers

Several differences that are notable between the scaling runs are revealed mainly in observing the

single best performer's solution. N4's judgment of the ninety degree signals is very similar over

the three dimensions. The 90' signals are closely clustered in each case and the positions of the

classes S59 and B59 are always equal to one another. The 90' signals are closely clustered for the
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3 three dimensions of the Best performers, but not as closely as for N4. "l'his implies that N4 had a

higher level of confusion among the 900 signals than did the Best subjects. Conversely. N4's

clustering of the 00 and 450 signals on the first dimension shows a better separation of these angles

than the Best performers. The 45' signals, except for the troublesome S54, separate from the 00,

and both sets of angles are. distinguished highly from the 90' signals. The third dimensions, as

mentioned, are also quite different from one another.

I The subject weights produced by the scaling model are interesting to examine for possible

relationships with performance levels. The outstanding characteristic of the weights for the Best

solution is that N6 uses dimensions one and three to a noticeably greater extent and dimension two

much less than subjects N4 and N8. The difference in his approach is also reflected in the relative
magnitude of his weirdness (0.43 vs. 0.31 or 0. 11). The second dimension is where the Angles

were broken out completely, and lack of use of this dimension is reflected in N6's relatively low

performance on Angle, as seen in Table 7.1-1. Although his performance is below that of his

peers, it is still above the statistically significant level of 61% correct. N4 is slightly better than N8

for Angle, and there is a probable relationship to the fact that N4 uses dimensions one and two,

which separate by Angle, more than N8 does. Although there is a noticeable difference in N4 and

N8's Thickness performance, it cannot be directly related to use of any of the dimensions since

none of them broke down by that parameter. It is interesting that N4's performance levels were

higher than N8's although his weirdness was also higher. This dismisses the tendency to assume

I that a higher weirdness, and thus distance from the typical subject's use of the dimension, implies

that the performance will be lower for the parameter which the dimension represents.

I The subject weights for N4 in the single best performer's solution do not reveal as many possible

correlations as those found in the Best solution's weights. Here, and in the single best solution for

Bottom and Air, each of the matrices represents a particular session of the experiment so it will be

referred to as such. This is opposed to a matrix from the Best solution being referred to by the

subject whose data it contains. The matrices for sessions 4 and 6 show that the dimensions were

used in a very similar fashion in the two sessions. The same holds true for the dimension use in

session 3 and the test session, although the use by the two pairs of sessions is not the same. The

weirdness measures for the four sessions parallel the dimension use levels. Unfortunately, the

i performance levels for the parameters show no direct association with the dimension use. On the

other hand, the high Angle performance of 89-100% is reflected in the fact that all of the

dimensions directly deal with the Angle differentiation. The presence of such an effect on all
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dimensions implies that the Angle parameter was consistently emphasized throughout N4's

performance.

7.4.2 Bottom Reflection Condition

I As in the case of the Free-field condition, five of the six dimensions in the two Bottom scaling runs

separated according to the signals' Angles to differing extents. The dimensions are shown in

I Figures 7.4.2-1 and 7.4.2-2. Dimension 1 has the same 90' vs. 45'/00 separation for both scaling

solutions as in the Free-field condition. The second dimension in both cases also matches the

Free-field solutions in distinguishing each Angle separately. In fact, the order along the second
dimensions for the two Bottom solutions is nearly identical. There is also a slight separation for

Thickness within Angle groupings, particularly for the single top performer, N6. Dimension three

in N6's solution also is separated by Angle, but in a different manner than usual which is

discussed below. As for the Free-field's Best performers, the third dimension for the Bottom

condition's Best performers does not readily distinguish any of the three parameters.

I The prevalence of the Angle parameter in five of the dimensions is reflected in the high
performance for Angle across the subjects. Again, as for Free-field, the variance in the data3 accounted for by the first two dimensions in both Bottom solutions, which break down by Angle,

is very high. The first dimensions account for the most at levels of 0.48 and 0.598, while the

second dimensions have significant levels of 0.23 and 0.27. Neither third dimension has a very

high level of importance at 0.08 and 0.07.

I N3 of the Best performers did very well with the Angle parameter, and relatively well overall. The

remaining parameters of Material and Thickness, however, he did not distinguish well. N6

identified Material and Thickness significantly better, and his overall performance was almost

double N3's. Oddly enough, their subject weights, and thus their dimension use, was very

similar. The weights, shown in Table 7.4.2-1(a). Dimensions one and two, viewed from a
3-dimensional perspective, show some Thickness separation within the Angle categories. The

assumption is that since the Thickness separation is not as obvious, N3 did not pick up on the

subtlety of the Thickness differentiation, but concentrated on Angle separation. N6, in addition to
his high performance on Angle, used the same dimensions similarly, but was able to discern more

subtle features of the signals, and was able to achieve superior performance. Despite the
differences in their performance levels, N3 and N6 had similar weirdnesses.
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Table 1(a)

c WigAngle

U SjeU Diml Dim2 Dim3 Diml Dim2 Dim3 Weirdness
N3 0.665 0.608 0.286 45.26 49.99 72.42 0.192
N4 0.739 0.114 0.260 20.96 81.70 70.89 0.452
N6 0.676 0.552 0.300 42.89 53.28 71.02 0.128

Overll Do1 Dim2 Dima
Irnce 0.482 0.229 0.080

I Table 1(b)

Subject Weights Anl

Session Diml Dim2 Dirn3 Dimni Dim2 Pima Weirdness
2 0.075 0.040 0.019 30.61 62.49 77.63 0.129
4 0.074 0.041 0.022 32.10 62.12 75.39 0.076
7 0.071 0.047 0.024 36.72 57.78 74.30 0.006

Test 1.542 1.031 0.521 36.84 57.65 74.30 0.008

I Oveoal Dim1 Dim2 Dim3
Importance 0.598 0.267 0.068

Table 7.4.2-1 Bottom Scaling Solutions' Usage Measures for Best and Single Top Performers

"The Best solution's subject N4 stood out in his greater use of dimension 1 and greatly decreased

use of dimension 2 compared to N3 and N6. This corresponds to his inability to separate the 00

and 450 from one another, although he could easily distinguish both from the 900 signals. His

weirdness level at 0.45 was also much higher than that of the other subjects. Although his Angle

success level was only 68%, as compared to 94-96% of subjects N3 and N6, it was still

significantly above chance levels. This is due to his excellent identification of the 900 signals, and

chance performance on the 450 and 0' signals. Ironically, considering his relative performance on

Angle, N4's performance on Material was the highest of the three Best performers at 67%. This

also is reflected in his unique use of the dimensions, particularly his lack of stress on the second

dimension where Angle is the most important parameter. It is apparent from N4's performance

that Material is distinguishable to some extent, although there is no obvious breakdown for

Material on any of the dimensions.

7-15

I



I
I

The scaling solution using only N6's data shows again that Angle is the most easily determined

Sparameter. The first two dimensions have a clear Angle separation, while the third dimension
separates the 90" signals from the others, but in a more unusual manner than has been seen until

now. The signals on either side of the 90' signals do not all fall into either the 00 or 450 category.

Observation of dimensions 2 and 3 together in a 3-space perspective, however, shows that the

Angles separate well with S50 as a slight problem.

As the sessions progress there is an overall decrease in the use of dimension 1, an increase in the

use of dimension 2, and a slight increase for dimension 3, and this is shown in Table 7.4.2-1 (b).

This change shows the parallel between dimension 2's complete separation on Angle, the 90'
signals' placement in the middle of dimension 3, and the rise in N6's performance for determining

the signals' Angles. An increase in his use of dimension 2, with its perfect separation of Angles,

shows that N6 is more able to make the fine discriminations shown by the dimension.

Additionally, the 0' and 450 signals are separated by Thickness on dimension 2. The dimensions

show that the 10% signals within each Angle are separate from the 5% signals. This separ.aon is

reflected in the expected increase in performance for Thickness as the use of dimension 2
increases. The increase in performance occurs, with an exception to the trend at session 7 which

can be explained by observing what happens to the Angle performance. In session 7 Angle is the

only parameter on which performance improves over the levels from previous sessions, while the

other levels fall a noticeable amount. The theory is that the subject concentrated on improving his

Angle discrimination ability at the expense of the other parameters. The test session performance

levels show, however, that he is competent for Material, Thickness and overall identification of the

signals, and has returned to the previously increasing trends in performance and dimension use

evident in sessions 2 and 4.

Although session 7Ts performance is a marked exception to that of the other sessions, the

weirdness for it is very small at 0.006. Other sessions' weirdnesses only range up to 0.13, which

itself is small, but it would be expected that the weirdness would be highest where the performance

trends varied the greatest amount. This is not the case, however, and it may be attributed to the

fact that none of the weirdness levels was particularly high for any of the four sessions in the

I solution.

7
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3 7.4.3 Air Condition

The task of distinguishing the parameters for the Air signals is fundamentally different than doifig
so for the Free-field and Bottom cases. This difference is readily reflected in the scaling solutions
for the two sets of matrices from Air subjects. Where the Free-field and Bottom solutions showed

many divisions for Angle, but few for Material and Thickness, the Air scaling solutions are
separated mainly by Material and Thickness, with some distinctions for Striker. The first
dimensions for both scaling runs divide by Thickness, the top performer's perfectly, and the
Best's with two exceptions. Similarly the third dimensions separate perfectly by Material with

only one exception in the Best solution. The second dimensions are not perfect, but each has
partial separations for Material and Thickness, and the top performer's second dimension separates3 by Striker to some extent as well. The dimensions for the Air solutions are displayed in Figures
7.4.3-1 and 7.4.3-2.

I The scaling results show an affinity of the Best subjects for determining the Material and Thickness

of the Air signals. The 82-92% success rate for these parameters by all three subjects is well above
the statistically significant level of 61%. The signal distribution along the dimensions parallels the
performance on the two parameters. The first dimension has the 5% and 10% signals widely
separated, with the exception of the S IM and S5W classes. The second dim'ýnsion has a diverse

clustering of signals, with some cases based on Material, and others on Thickness. The Brass 5%
signals are at the extreme lower end, five of the six 10% signals cluster in the middle, and four of
the Steel signals are toward the high end of this dimension. The third dimension separates cleanly
by Material, with the exception of the S5M class. There is also a Thickness differentiation among

the Brass signals, with the 10% signals at one extreme and the 5% signals toward the middle of the
dimnension where the Steel 5% signal class is also included.

A plot of Best dimensions two vs. three, seen in Figure 7.4.3-3, shows that a perfect Material3 separation exists about the boundary between the positive and negative quadrants. A good
separation for Thickness is also incorporated into the Material distinctions in this view, with only3 the two exceptions which were apparent in the first dimension. In other words, the S I M, S5W
confusion seen on dimension one is also present in the 2-dimensional view of the dimensions two
and three. Overall, the dimensions separate very cleanly for both Material and Thickness, and this

is reflected in the performance levels. Ironically, there is little indication of visual separation for
the Striker parameter on any of the three dimensions. Regardless of this, the subjects'
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performance levels of 43-59% for Striker are at or near the statistically significant level of

43.75%. Their overall performance levels of 35-46% are also well above 16.67% which is where

the performance is judged to be statistically above chance.

The subject weights produced by the individual differences model, seen in Table 7.4.3-1 (a), show
no significant correlation between individual subject's performance and their use of the

dimensions. The dimensions were used by the subjects almost equally both relative to one another

and across other subjects. The weirdness levels for the subjects also reflect this consistency, and

only range from 0.03 to 0.05. These results made it difficult to associate any particular

performance behavior with using a given dimension or set of dimensions.

Table 1(a) Bs

Table I(a)Subject 
Weights 

Angles

Subject Dim I Dim2 Dim3 Dim I Dim2 Dim3 Weirdness
N4 0.463 0.404 0.351 49.14 55.19 60.26 0.045
N7 0.539 0.534 0.455 52.47 52.87 59.05 0.030

NIO 0.432 0.399 0.402 52.67 55.94 55.64 0.053

QOyerall DimI Dim2 Dim3
Importance 0.231 0.203 0.164

Table 1(b) N4

I Subject Weights Angle

Session Dim I Dim2 Dim3 Dim I Dim2 Dim3 Weirdness
5 0.062 0.061 0.054 52.95 53.37 57.98 0.073
6 0.065 0.066 0.049 51.61 51.05 62.09 0.116
7 0.063 0.059 0.056 52.32 55.16 56.78 0.054

Test 1.260 1.024 1.002 48.67 57.54 58.31 0.012

Overall Diml Dim2 Dim3
Importance 0.400 0.265 0.253

Table 7.4.3-1 Air Scaling Solutions' Usage Measures for Best and Single Top Perfonners

The consistent occurrence of Material and Thickness separation along all three dimensions, the

performance on these parameters, and the equal use of the dimensions are paralleled by the overall
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importance placed on the dimensions. Unlike in the Free-field and Bottom conditions, the variance
importance levels here range only from 0.16 to 0.23. The relatively small difference among

dimensions emphasizes that all of the dimensions were used by the subjects in their classification

decisions, particularly for Material and Thickness.

The first dimension for the single top performer for Air, N4, separates perfectly by Thickness,

although SIM and SIP are separated from the other 10% signals and are near the 5% signals. This

does not mean, necessarily, that N4 could not distinguish the SIM and SIP classes of signals,

only that they were confused with the 5% signals more often than with the other 10% signals.

Dimension two has an interesting array of signal clusters. The Plastic and Wood strikers consume

three quarters of the dimension with the Metal strikers clustered in the lower quarter. The

separation of the Metal signals was an important result and it was reflected in N4's superior Striker

performance of 58-72% over the other two Best subjects' levels of 43-46%. Within the Plastic and

Wood distribution the Steel, Brass 10%, and Brass 5% signals are grouped separately. Within the

Metal cluster the 10% and 5% signals are separate. The different groupings on this dimension

encompass all three parameters to varying extents. The third dimension is equally mixed across the

three parameters. Overall it is separated perfectly by Material. Within the Brass signals the 5%

and 10% signals are separate, and within the Steel signals the Metal signals are grouped separately

from the Plastic and Wood signals.

Overall the dimensions divide well by Thickness and Material, but only separate Striker as Metal

vs. Plastic/Wood. This difference is reflected in the performance for the three parameters. N4 has

a success rate of 81-89% for Material, 72-89% for Thickness, but only 58-72% for Striker.

Despite this, his Overall performance is well above chance levels of 16.7% and 25% for the

training and test sessions respectively.

N4's use of all dimensions is shown in the small difference in the amount of variance accounted

for across dimensions. The levels ranged only from 0.25 on the third dimension to 0.4 on the
first. The closeness in the range stresses that the information represented on all dimensions

contributed significantly to N4's performance of the classification task.

As was the case for the Best performers the subject weights for N4's solution, shown in Table

7.4.3-1 (b), are relatively consistent. This consistency implies that the dimensions were weighted,

and thus used, approximately equally across sessions. In N4's case, however, his performance
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on Thickness is reflected in his use of dimension one which separated Thickness perfectly.
Specifically, as he uses dimensi;n one more, his Thickness performance level increases.
Similarly, his performance for Material parallels his usage of dimension three which was

predominantly separated by Material. Although dimensions two and three break down somewhat
by Striker the performance trends for Striker are not exhibited in those dimensions' subject

weights. The consistency across the individual sessions' use of the dimensions is also shown in
their weirdness values which are of small magnitude and range from 0.01 to 0.11.

7.5 SUMMARY

Overall the scaling solutions provided dimensions, and other weight-related measures, which were
used in later analyses to derive signal features used by the humans in performing the classification

tasks for the Free-field, Bottom, and Air signal conditions. The Free-field and Bottom solutions
exhibited the subjects' predominant ability to separate the signals by Angle. These subjects were
especially accomplished at separating the 900 signals from the group of 450 and 0' signals. The Air
solutions contained more diversity for all three parameters, but showed that the subjects were

particularly adept at discerning Material and Thickness. Many of these performance results were
reflected in the subjects' use of the dimensions, which was shown by examining the subject
weights for each of the dimensions alone and together. The discussion of the scaling solution

dimensions, the signal classes' distribution over them, and the subject weights associated with
them is only a portion of the evaluation of how the humans went about discriminating signal
parameters. The signal features which presumably formed the basis of the subjects' processing are
explored when correlations between the human and network data, as well as signal

parameterizations, are examined in Sections 9 and 10.
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I 8.0 NEURAL NETWORK TRAINING

The neural network experiments determined the ability of networks to classify sonar returns in the

frequency and time domains, as well as frequency over time, under a certain set of training

parameters. These experiments provided network hidden nodes and data to use in

multidimensional scaling routines, the results of which could be used for comparing the processing

strategies of networks and human subjects performing the same signal classification task. Of the
many possible neural network architectures, both the backpropagation and the integrator gateway

networks were chosen as the models to use. Initial studies with the counterpropagation network

architecture and training regime indicated that the method was not suited to producing networks

with comparable strategies to those of human subjects.

I 8.1 BACKPROPAGATION

I The training schedule for the backpropagation network (BPN) model including training networks
with several forms of input data. The trained networks were then tested against signals under

differing conditions. The signals used as input were in either the time or frequency domain. The

first set of training used input signals in their original "clean" format. In other words, no type of

noise was added to the signals as they were fed into the network. These "clean-trained" networks

were tested against the original clean signals and signals which had pseudo-random noise added to
them. After the clean networks were trained and tested, BPNs were trained with the signals which

had pseudo-random noise added to them. For simplicity these signals are referred to as noisy

signals in this section and the remainder of the report. The noise-trained networks were then tested

against both the clean and noisy signal sets. The results from these networks are discussed and
compared later in this section.

In an effort to use concise references to specific networks and nodes within them, the following

conventions subsequently will be used. The first portion of the abbreviation refers to the signal set

(Air, Free, Bot). 1his is followed by the number of hidden nodes and which random seed was
used. For example, 6H(3) means six hidden nodes, with the third random seed used. Next

follows the letter "F', for frequency domain, or the letter "T", for time domain. The domain

indicator is foiiowed by the letter "N" if the network was trained with noisy signals; if trained with

clean signals, no letter is included. With this notation, all of the network parameters are clearly
specified. For example, the abbreviation "Air2l1(2)FN" denotes an air signal, two hidden node

I
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3 network, in the frequency domain, trained with noise from the second random seed. A free signal,

zero hidden node, time domain network trained without noise and with the first random number
seed would be abbreviated "FreeOH(I)T'.

To specify nodes within a network, a dash followed by one to four characters is used. For input

and hidden layers, this is the daaracter "T' or "H", fo!lowed by a number indicating the node. The

output nodes are denoted by the following scheme: "B" for brass, "S" for steel, "Ten" and "Five"

for ten percent and five percent target thickness, and "0", "45", or "90" for the target orientation in
degrees. For example, "Bot4H(1)TN-Ten" refers to the ten percent output node of the Bottom3 four hidden node network, trained with time domain noisy data using random seed (1).
"Air4H(2)F-I7" is the seventh input node for its specified network. Such abbreviations are used

for the remainder of the report.

8.1.1 Signal Preparation

To implement the backpropagation networks effectively, it was desired to make the input layers as
small as possible, while still adequately representing the information in the signals. This required

greatly compressing the signals from their original sizes of hundreds or even thousands of time
series points. The practical upper limit on input layer size, in both the time and frequency

domains, was approximately fifty. The exact sizes chosen varied, depending on details particular
to the signal set and domain. The process of rendering initially very long signals as network inputs
will be discussed in two stages: preprocessing and compression. The steps in each stage are

described below and summarized in Figure 8.1.1-1.

8.1.1.1 Preprocessing

The preprocessing performed on the Free and Bottom mean 0 adjusted signals, described in

Section 4, paralleled the preparations of these signals for the human subjects. The same

preprocessing was performed for both the time domain and frequency domain signal compression.
A Fast Fourier Transform (FFI1) was applied to the mean 0 adjusted 2048 point signals, they were
band-pass filtered, and inverse transformed. The ranges of the filter were the same as those used
in preparing the signals for the human subjects. The Free-field signals were aligned by the onset

of the specular and both the Free and Bottom signals were normalized to the range (0.0, 1.0). The
Air signals were subjected to no processing prior to the signal compression.
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Preprocessing

Signal Set Free-Field Bottom Air
Original Signal Size 2048 2048 < 32456
Band-Pass Filtered 243.2 to 587.9 kHz 229.5 to 587.9 kHz Not Performed
Means of Alignment Onset of Specular Back of Box Return Impact of Striker

Time Domain Compression

Signal Set Free-Field Bottom Air
Padded/ Truncated Size 800 1333 32768
Window for Averaging 32 Time Points 31 Time Points 1024 Time Points
Final Size of Input 25 43 32I

Frequency Domain Compression

Signal Set Free-Field Bottom Air
Padded/ Truncated Size 2048 2048 32768
Hamming Windowed Yes Yes Yes

and FFTed
I # of Independent Bins 1025 1025 16385

Bandwidth Per Bin 0.9766 kHz 0.9766 kHz 0.9766 Hz
1st Net Input Contains Bins 249 - 264 Bins 235 - 249 Bins 0 - 512

# Bins in Other Inputs 16 16 512
Final Size of Input 22 23 32

I
I
I

Figure 8.1.1-1 Signal Processing Summary for Network Inputs

I
I
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8.1.1.2 Compression for Time Domain Signals

The steps involved in compressing the signals varied, depending on the domain and the signal set.
In every case it was necessary, at some point, to reduce the size of the signals, and this was always

accomplished in the same way. The absolute values of the first N points in a signal were summed
and divided by N to make the first input, the next N were used in the same way to create the

second input, etc. This process will be referred to below as "averaging the signal over a window
of size N." The resulting representation consisted of a factor of N fewer points, but contained

information from all the original signal values. Because the absolute values were used instead of a
signal's signed values, the result was a good representation of the signal's shape.

8.1.1.2.1 Free-Field Signal Set

I For the human subjects, the Free-field signals were cut off to different lengths to reduce any

spurious cues present in the noise following the end of the target energy. In this particular context
"I "noise" is used to refer to the energy present in the signal which is not attributable to energy
reflected from the target. It would be desirable to do reduce the signals to different lengths for
network inputs as well, but because each signal had to be applied to the same input layer, all the

signals had to be cut to the same size. Prior to the frequency domain interpolation, the longest

Free-field signal prepared for the human subjects was 800 points (the 100 point ramp was started
at input 700), so this was the initial length for all of the network signals. No ramp was applied to
the signals to be used for network inputs. It was decided that the window size used for averaging

in this case would be N = 32, which resulted in an input layer size of 25. This was chosen
because it was less than the upper limit of 50, but still contained all the essential features of the
signals' envelopes. The final step was to normalize the inputs to the range (0.0, 1.0) again to
assure a consistent level for the signals across the input set.I
8.1.1.2.2 Bottom Signal SetI
Precise alignment of the Bottom signals was not important for the human subjects, due to the

periods of silence separating successive sounds during the experiment sessions. However, the

nature of network inputs required that some alignment be performed. If the inputs were not
consistently aligned within a class, the networks would either fail to learn to classify the signals,
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3 or, more likely, they would learn to distinguish the signals based on individual signal's anomalies.

If signals from different classes were aligned improperly, the alignment itself might provide a3 spurious cue, leading to a non-generalized network solution.

It was a simple matter to align the Free-field signals, due to the consistent and obvious onset of
their speculars. The Bottom signals, however, characteristically built up gradually over time, with

no obvious or consistent starting point. Fortunately, these signals did possess a well defined
"I"stopping point." In addition to the return from the sandy bottom and the target, each Bottom

signal contained a reflection from the back edge of the box in which the target was placed.

SAlthough small, this reflection was easily identified in each signal, because it occurred after most

of the actual bottom return had decayed. Since the distances between the back of the box and the

transducers were constant for all targets and orientations, the reflection from the back of the box

provided a stable and consistent marker for the end of each Bottom signal. It was found that,

within each signal class, the position of the return from the back of the box was constant across all

instances. The position of the back of the box return was therefore determined for each class from

the averaged signal.

Once established, the position of the reflection from the back of the box was used as the cutoff for

the Bottom signals. It was then empirically determined that even the longest Bottom return was

comfortably contained within approximately 1350 points prior to this cutoff. The signal length

was then set to 1333 points, which yielded 43 signal inputs after averaging over a window of size

31.

I 8.1.1.2.3 Air Signal Set

I The Air signals were the most straightforward to process since they required no filtering. As was

true of the Free-field signals, Air signals were of different lengths for the human subjects. To

render them in a form palatable to the networks, they were all made to be the same length. The

longest human experiment signal was 32456 points. For processing convenience, this was3 rounded up to 32768 points for the network inputs. This resulted in no significant change to the

information contained in the signal, due to the extremely small values of the signal in the end

region. The value 32768 was chosen so that averaging over a window of N = 1024 would

produce network inputs of 32 points.
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8.1.1.3 Compression for Frequency Domain Signals

The network inputs in the time domain each represented the averaged amplitude of the signal over

the period of time spanned by each input point. By analogy, in the frequency domain, it was

necessary to create network inputs which represented the averaged amplitude of the frequency

components in the band spanned by each input bin. Many of the steps to obtain this goal were the

same for the three signal sets. The first step was to take an FFT of each real-valued signal. To

facilitate this, the time domain signals just described were zero-padded to make the Free-field and

Bottom signals 2048 points long, and the Air signals 32768 points long. The signals then had a

Hamming window followed by an FF7 applied to them. The results in each case were complex-

valued frequency domain representations with as many bins as there were points in the zero-3 padded time domain signals. These frequency domain representations were converted into

complex polar form, yielding an amplitude and phase for each frequency bin. Due to symmetry,

many values in the FF1 of a real-valued signal are redundant- If the FF7 consists of N bins of

frequency amplitude data, the amplitudes in bins N/2+1 through N-I are the mirror image of the

values in bins 1 through N/2-1. This means that the FFT may be completely represented by the

first N/2+l independent bins which include the DC offset of the signal, N/2-1 frequency values

and the Nyquist frequency value. Only the amplitudes were needed to create the network inputs,

so the phases were subsequently ignored.

The acts of performing the FFT and using only thc unplitude from each bin thus reduced the size

of the frequency domain representations -the signals by almost a factor of 2. At the conclusion

of these first steps, the Free-field and Bottom signals consisted of 1025, and the Air signals of

16385, positive values. Following this, the only remaining step was averaging the signals over the

appropriate window sizes. The details of how this was performed differed by signal set, and will

be described separately below.

3 8.1.1.3.1 Free-Field Signal Set

3 Because the Free-field signals were previously band-pass filtered, their FFTs consisted of all zeros

outside of the bins containing the frequencies passed. The passed bins were 249 through 601,

inclusive, which represent the frequency range 243.2 through 587.9 kHz. (The Nyquist frequency

is 1000 kHz; bins I through 1025 divide up the range 0 to R"X) kHz, giving 0.9766 kHz per bin.)

This range consists of 353 bins; averaging with a window of n = 16 would give 22 inputs, with
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one bin left over. The extra bin was simply included in the lowest frequency average, so that the
first input actually represented 17 bins (16.602 kHz), starting at 243.2 kHz. Each subsequent

input then represented 16 bins (15.625 kHz). The odd bin was included in the first input because

the upper limit of the band-pass filter is the same for Bottom signals. By including the extra bin in

the first average, the rest of the inputs cover the same frequency ranges as most of the Bottom

signal inputs. Table 8.1.1.3.1-1 gives the final correspondence between bins and frequency

ranges for the Free-field signals.

8.1.1.3.2 Bottom Signal SetI
In all respects, the compression of the Bottom signals was accomplished in the same way as for the

Free-field signals. The only difference in the way the two cases were handled was that the lower

limit of the band-pass filter in the Bottom signal set was 229.5 kHz, corresponding to bin 235.

The total number of bins to be compressed was then 601 - 235 = 367. Averaging over a window

of N = 16 would give 22 inputs, with 15 bins left over. Rather than include 15 extra bins in the

first average, these bins were averaged to provide one extra input, giving the Bottom compressed

signals a total of 23 inputs. The first of these averaged bins represented 15 bins (14.648 kHz),

starting at 229.5 kHz, and the rest each represented 16 bins (15.625 kHz). The last 21 of these

represent the same frequency ranges as the last 21 of the Free-field signal inputs. Table

8.1.1.3.2-1 gives the final correspondence between bins and frequency ranges for the Bottom

* signals.

NOTE: The DC offset was not included in creating the frequency domain Free-field and Bottom
signals since it had already been set to 0 in the first step of processing the original signals.

I 8.1.1.3.3 Air Signal Set

The signal-to-noise ratio of the Air signals was so high that they were not band-pass filtered at all.

They were simply averaged over a window of 512 bins, with bin 0 (the DC offset) being included3 in the first average. The sampling rate for the Air signals was 16000 Hz, so each resulting bin

represented 0.9766 Hz. The 16385 independent values in the Air FFTs were thus compressed to a

network input size of 32, each value thus covering a range of 500.0 Hz. Table 8.1.1.3.3- 1 gives

the final correspondence between bins and frequency ranges for the Air signals.

I
* 8-7

I



I
I

I Free-Field Signal Set

Input Frequency Range Covered

1 243.16 to 259.77 Hz
2 259.77 to 275.39 Hz
3 275.39 to 291.02 Hz
4 291.02 to 306.64 Hz
5 306.64 to 322.27 Hz
6 322.27 to 337.89 Hz
7 337.89 to 353.52 Hz
8 353.52 to 369.14 Hz
9 369.14 to 384.77 Hz

10 384.77 to 400.39 Hz
11 400.39 to 416.02 Hz
12 416.02 to 431.64 Hz
13 431.64 to 447.27 Hz314 447.27 to 462.89 Hz
15 462.89 to 478.52 Hz
16 478.52 to 494.14 Hz
17 494.14 to 509.77 Hz
18 509.77 to 525.39 Hz
19 525.39 to 541.02 Hz
20 541.02 to 556.64 Hz
21 556.64 to 572.27 Hz
22 572.27 to 587.89 Hz

I
Table 8.1.1.3.1-1 Free-Field Network Inputs in

Frequency Domain

I
I
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* Bottom Signal Set

Input Frequency Range Covered

1 229.49 to 244.14 Hz3 2 244.14 to 259.77 Hz
3 259.77 to 275.39 Hz
4 275.39 to 291.02 Hz
5 291.02 to 306.64 Hz
6 306.64 to 322.27 Hz
7 322.27 to 337.89 Hz
8 337.89 to 353.52 Hz
9 353.52 to 369.14 Hz

10 369.14 to 384.77 Hz
11 384.77 to 400.39 Hz
12 400.39 to 416.02 Hz
13 416.02 to 431.64 Hz
14 431.64 to 447.27 Hz
15 447.27 to 462.89 Hz
16 462.89 to 478.52 Hz
17 478.52 to 494.14 Hz
18 494.14 to 509.77 Hz
19 509.77 to 525.39 Hz
20 525.39 to 541.02 Hz
21 541.02 to 556.64 Hz
22 556.64 to 572.27 Hz
23 572.27 to 587.89 Hz

I

I Table 8.1.1.3.2-1 Bottom Network Inputs in
Frequency Domain

I
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Air Signal Set

I Input Frequency Range Covered

I Offset + 0 to 500 Hz
2 500 to 1000 Hz
3 1000 to 1500 Hz
4 1500 to 2000 Hz
5 2000 to 2500 Hz
6 2500 to 3000 Hz
7 3000 to 3500 Hz
8 3500 to 4000 Hz
9 4000 to 4500 Hz

10 4500 to 5000 Hz
11 5000 to 5500 Hz
12 5500 to 6000 Hz
13 6000 to 6500 Hz
14 6500 to 7000 Hz
15 7000 to 7500 Hz
16 7500 to 8000 Hz
17 9000 tW 8500 Hz
18 8500 to 9000 Hz
19 9000 to 9500 H7

20 9500 to 10000 Hz
21 10000 to 10500 Hz
22 10500 to 11000 Hz
23 11000 to 11500 Hz
24 11500 to 12000 Hz
25 12000 to 12500 Hz
26 12500 to 13000 Hz
27 13000 to 13500 Hz
28 13500 to 14000 Hz
29 14000 to 14500 Hz
30 14500 to 15000 Hz
31 15000 to 15500 Hz
32 15500 to 16000 HzI

Figure 8.1.1.3.3-1 Air Network Inputs in
Frequency Domain

I
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8.1.1.3.4 Frequency Bin Definition

After the filtering performed on the various signals, the frequency domain inputs created from the
Free-field, Bottom and Air signals each represented bands of width 15.6 kHz, 15.6 kHz and 500
Hz, respectively. For convenience, the frequency content of a particular input will be referred to

by the lower bound of its range, with the true range of the band implied. For example, the Air
signals were unfiltered, so input I I in the Air frequency domain signals covers the frequencies 0 -

500 Hz. For brevity, in the context of discussion it would be said simply that input I1 corresponds

to 0 Hz. Similarly, the statement that in the Bottom frequency domain, input 17 corresponds to
323 kHz really means that 17 corresponds to the range starting at 323 kHz, and continuing for

another 15.6 kHz. In round figures, this is the range 323 - 339 kHz.

8.1.2 Network Training Using Clean Signals

I Pilot studies were conducted to determine the values for the various adjustable network parameters,

such as the learning rate. The values of these parameters, shown in Table 8.1.2-1, were fixed and
common to all network runs. The number of input nodes for the networks varied with the signal
condition, and are shown in Table 8.1.2-2.

Network Parameter Setting Used

Learning Rule Backpropagation - delta rule
Training With Validation Set
Learning Rate 0.1
Momentum 0.5
Training Cycles 20,000
Input Noise NoneValidation Interval 10 Cycles

Table 8.1.2-1 Network Parameters

The number of hidden nodes was varied as an independent variable to evaluate the effect on the

solution. For each condition, networks with hidden layers of 0 (a two layer network), 2, 4, and 6
hidden nodes were trained. The pilot studies indicated that the number of hidden nodes had a large

effect on the network's ability to learn the patterns under consideration. The influence of the

hidden nodes is studied in more detail in this experiment.I
i 8-I1
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Signal Condition Frequency DOmain T'ime I )onuin

Free-Field 22 25
IBottom 23 43
Air 32 32

Table 8.1.2-2 Number of Input Nodes for Frequency and Time Domains

There were always 7 output nodes, by which each network indicated its classification of the input

signal by parameter. The output nodes and their corresponding parameters and the classes they

represent are listed in Table 8.1.2-3.

Output Node Parameter Class Identified

1 Material Brass
2 Material Steel
3 Thickness 10%
4 Thicknesc 5%
5 Angle/Striker 0°/Metal
6 Angle/Striker 45V/Plastic
7 Angle/Striker 90•0 W•lod

Table 8.1.2-3 Output Node Description

Each output node had a target value of 0 or 1, which indicated the class to which the applied signal

input belonged. A one on an output node indicated that the signal was of the corresponding class.

The sigmoid squashing function was always used as the transfer function for both die hidden and

output layers.

A total of 72 neural networks were trained, 36 for the frequency domain signals and 36 for the time
domain signals. The breakdown of the 36 runs is the same for each of the dlomains. There were

12 runs for each of the 3 signal conditions (Free-ficld, Bottom, and Air), and theire were 3 runs for

each for the 4 different hidden node possibilities (0, 2, 4. and 6). Runs with the same number of

hidden nodes were differentiated by selecting a diffelrcnt random seed for initialiiing the weieht.s.

thereby starting tile networks in a diftlerent position iin the w(-eTilt space. A.s iti inmarv l-F the ntmhcr

ot 1n"ural networks that were run is shown in lahle 8.1 .2- Ahe tabIle is identical tor bIoh the

f'rcquency and tninc domainl.

I12
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Network Configurations

Signal Condition Hidden nodes Number of Runs
Air 0 3

2 3
4 3
6 3

* Bottom 0 3
2 3
4 3

* 6 3

Free-Field 0 3
2 3
4 3
6 3

* 36

Table 8.1.2-4 Neural Networks Run for Three Signal Conditions

All of the runs were performed on a SUN SparcStation, with a neural network program developed

by ARD. Training was conducted for 20,000 cycles for all networks, with a cycle equaling one

pass through the entire training set. Every ten cycles the validation set was presented to the

network and the mean squared error was calculated. If the mean squared error was lower than all

previous mean squared errors calculated for the validation set, the current weight matrix was

maintained as the "best weights." At the end of the 20,000 cycles the "best weights" were captured

for use in the analysis of network performance.I
8.1.3 Clean-Trained Networks Tested with Clean Signals

Two benchmarks were used to determine the neural networks performance on the validation set,

mean squared error and percent correct. These two benchmarks are defined as follows.

Mean squared error minus the sum of the outputs minus the targets squared, fOr each of the 96

validation patterns divided by 96 (the number of validation patterns).

I
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Percent correct - Percent correct was broken down into four categories

% correct Material

3 % correct Thickness

% correct Angle (Striker for the Air signals)

% correct Overall (all three parameters correct)

Percent correct refers to the proportion of the validation patterns that the network was able toU classify correctly. A simple aigorithm was used to calculate the percent correct. For example, to

determine the percent correct for Angle the following procedure was used. There are three output
nodes that represented Angle (0', 450, and 90'). One of the target outputs for these three nodes

was always 1 and the others were always zero. If the value of the output node with a target value

of one is greater than the output values from the other two output nodes, then this pattern is

counted as correct for Angle. Similar calculations are done for Material and Thickness. Percent

correct overall is the percent of the patterns that were simultaneously correct (as defined above) for

Material, Thickness, and Angle.

8.1.3.1 Frequency Domain Results

The results of the frequency domain neural networks are summarized in Tables 8.1.3.1-1 through

8.1.3.1-3 and Figures 8.1.3.1-1 through 8.1.3.1-3. The tables show the percent correct and mean
squared error for each of the 36 frequency domain runs for each signal condition along with

averages across random seed. The figures show the same data for the single best network at each

number of hidden nodes. Some networks had perfect performance (100% correct for the Overall

condition) for both Free-field and Bottom signals. Thus it appears that the neural networks are
well suited for these signals in the frequency domain. Performance on the Air signals was a!so

very good (97%), but it never reached the 100% levels achieved by the Free-field and Bottom

neural networks.I
The performance of the Air signal neural networks was very high except for the 2 hidden node case3 where the average percent correct (all) was only 69.3%. This contrasts with the 0, 4, and 6 hidden

node conditions for which average percent correct (all) is near 100%. The mean squared error

follows a similar pattern with 2 hidden nodes being the worst and the other conditions having a
much lower error. The performance of the Bottom signal neural networks was 100% correct for
the 0, 4, and 6 hidden node conditions. The percent correct was only about 70% for the 2 hidden
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Hidden Pmetr Seed I Avrage
Nodes

M 100.0 100.0 100.0 100.0
T 100.0 100.0 100.0 100.0

0 A 100.0 100.0 100.0 100.0
Al 100.0 100.0 100.0 100.0

MSE 0.002 0.002 0.002 0.002

M 99.0 95.8 96.9 97.2
T 97.9 100.0 97.9 98.6

2 A 78.1 74.0 65.63 72.6
All 75.0 74.0 61.5 70.1
MSE 0.471 0.504 0.544 0.506

I M 100.0 100.0 100.0 100.0
T 100.0 100.0 100.0 100.0

4 A 100.0 100.0 91.7 97.2
All 100.0 100.0 91.7 97.2
MSE 0.001 0.000 0.086 0.029

M 100.0 100.0 100.0 100.0
T 100.0 100.0 100.0 100.0

6 A 100.0 100.0 100.0 100.0
All 100.0 100.0 100.0 100.0
MSE 0.000 0.000 0.000 9.000

Averag Performance Across Seeds

Hidden Nodes
Parameter 2 4 6

M 100.0 97.2 100.0 100.0
T 100.0 98.6 100.0 100.0
A 100.0 72.6 97.2 100.0
All 100.0 70.1 97.2 100.0

MSE 0.002 0.506 0.029 0.000

I Best Network Performance

Hidden Nodes
Parameter 0 2 4

M 100.0 99.0 100.0 100.0
T 100.0 97.9 100.0 100.0
A 100.0 78.1 100.0 100.0
All 100.0 75.0 100.0 100.0

MSE 0.002 0.47 0.00 0.000

Table 8.1.3.1-1 Free-Field Frequency Domain Network Performance

I
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Hidden Parameter SeedI Sed2 S Average

M 100.0 100.0 100.0 100.0
T 100.0 100.0 100.0 100.0

0 A 100.0 100.0 100.0 100.0
All 100.0 100.0 100.0 100.0

MSE 0.007 0.007 0.007 0.007

M 78.1 83.3 75.0 78.8
T 66.7 100.0 100.0 88.9

2 A 100.0 100.0 100.0 100.0
All 54.2 83.3 75.0 70.8

MSE 0.664 0.501 0.546 0.570

U M 100.0 100.0 100.0 100.0
T 100.0 100.0 100.0 100.0

4 A 100.0 100.0 100.0 100.0
All 100.0 100.0 100.0 100.0

MSE 0.000 0.000 0.000 0.000

U M 100.0 100.0 100.0 100.0
T 100.0 100.0 100.0 100.0
A 100.0 100.0 100.0 100.0

IAll 00.0 100.0 100.0 100.0
MSE 0.000 0.000 0.000 0.000

Average Performance Across Seeds

Hidden Nodes
Parameter 0 2 4

M 100.0 78.8 100.0 100.0
T 100.0 88.9 100.0 100.0
A 100.0 100.0 100.0 100.0

All 100.0 70.8 100.0 100.0
MSE 0.007 0.570 0.000 0.000

U Best Network Performance

* Hidden Nodes
Q 2 4

M 100.0 83.3 100.0 100.0
T 100.0 100.0 100.0 100.0
A 100.0 100.0 100.0 100.0

All 100.0 83.3 100.0 100.0
iMSE 0.007 0.50 0.00 0.00

Table 8.1.3.1-2 Bottom Frequency Domain Network PerformanceI
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3 Hidden Paramete SMI Sed2 Seed3 Average
M 100.0 100.0 100.0 100.0
T 100.0 100.0 100.0 100.0
T 100.0 96.0 96.0 96.0

0 S 96.9 96.9 96.9 96.9
All 96.9 96.9 96.9 96.9
MSE 0.087 0.089 0.088 0.088

M 100.0 100.0 100.0 100.0
T 96.9 97.9 99.0 97.4

2 S 63.5 79.2 75.0 71.4
All 61.5 77.1 74.0 69.3
MSE 0.544 0.447 0.468 0.496

I M 100.0 100.0 100.0 100.0
T 100.0 100.0 100.0 100.0

4 S 96.9 97.9 97.9 97.6
All 96.9 97.9 97.9 97.6
MSE 0.042 0.032 0.036 0.037

M 100.0 100.0 100.0 100.0
T 100.0 100.0 100.0 100.0

6 S 97.9 97.9 97.9 97.9
All 97.9 97.9 97.9 97.9

MSE 0.035 0.036 0.046 0.039

Average Performance Across Seeds

Hidden Nodes
Parameter 2 4

M 100.0 100.0 100.0 100.0T 100.0 97.4 100.0 100.0

S 96.9 71.4 97.6 97.9
All 96.9 69.3 97.6 97.9

MSE 0.088 0.496 0.037 0.039

U Best Network Performance

i Hidden Nodes
parameter Q 2 4

M 100.0 100.0 100.0 100.0
T 100.0 97.9 100.0 100.0
S 96.9 79.2 97.9 97.9

All 96.9 77.1 97.9 97.9
MSE 0.09 0.45 0.03 0.03

Table 8.1.3.1-3 Air Frequency Domain Network Performance
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I Best Free-Field Networks

* 100 0.6
9 0 -0 .5
80 0.5 M

S70 0.4 W '7
S60T

50 -0.3 'l

S40 I A
0.2 All

S30 0.
20 -0. MSE
0 0.0

0 2 4 6

Number of Hidden Nodes

Figure 8.1.3.1-1 Performance for Best Free-Field Frequency Domain Network

I
Best Bottom Networks

I 100 0.6
90 0.5

E[80 0.5M

70 0.4
S60 T

50 -0.3 ,
S40 0. A
S30 -0.2 All
,20 0.110 -- Km"-- MSE

0 0.0I0 2 4 6
Number of Hidden Nodes

Figure 8.1.3.1-2 Performance for Best Bottom Frequency Domain Network

8-18

.II



I
I

Best Air Networks

100 0.6
90
80 -0.5 EZZ

S70 0.4 ~.M
S60

50 0.3 T

S40 1

~. 30 02 s
S20 0.1 AD

I 100 T .00, MSE

0 2 4 6

Number of Hidden Nodes

Figure 8.1.3.1-3 Performance for Best Air Frequency Domain Network

node condition. Similarly, the performance of the Free-field signal neural networks was also very

good except for the 2 hidden node condition.

I Since the networks without hidden layers successfully classified the signals, it is clear that the

problem can be accomplished without nonlinear elements. The two hidden node networks had the

benefit of nonlinear elements, yet were generally less capable of the classification tasks.

Presumably the two hidden node networks lacked enough network connections on which to

encode a sufficient solution. For instance, an Air network without a hidden layer had 32 * 7 = 224

connections. Given two hidden nodes, the network had only 78 connections. The advantages of a

nonlinear transformation could not overcome the relative lack of connections.

8.1.3.2 Time Domain Results

The results of the time domain neural networks are summarized in Tables 8.1.3.2-1 through

8.1.3.2-3 and Figures 8.1.3.2-1 through 8.1.3.2-3. The tables show the percent correct and mean

squared error for each of the 36 time domain runs for one type of signal along with averages across
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Hidden Parameter Average

M 100.0 100.0 100.0 100.0
T 100.0 100.0 100.0 100.00 A 100.0 100.0 100.0 100.0AlI 100.0 100.0 100.0 100.0

MSE 0.122 0.122 0.122 0.122

M 83.3 64.6 58.3 68.7
T 66.7 76.0 75.0 72.6

12 A 96.9 100.0 99.0 98.6
All 46.9 54.2 40.6 47.2

MSE 0.789 0.691 0.824 0.768

U M 100.0 100.0 100.0 100.0
T 100.0 100.0 100.0 100.0

4 A 100.0 100.0 100.0 100.0
All 100.0 100.0 100.0 100.0

MSE 0.001 0.001 0.001 0.001

M 100.0 100.0 100.0 100.0
T 100.0 100.0 100.0 100I0

6 A 100.0 100.0 100.0 100.0
All 100.0 100.0 100.0 100.0

MSE 0.000 0.000 0.000 0.000

3 Average Performance Across Seeds

Hidden Nodes
Parameter Q 2 4

M 100.0 68.7 100.0 100.0
T 100.0 72.6 100.0 100.0
A 100.0 98.6 100.0 100.0
All 100.0 47.2 100.0 100.0

MSE 0.122 0.768 0.001 0.000

I Best Network Performance

P t Hidden Nodes
parameter 0Z 4_5

M 100.0 64.6 100.0 100.0
T 100.0 76.0 100.0 100.0
A 100.0 100.0 100.0 100.0

All 100.0 54.2 100.0 100.0
MSE 0.122 0.691 0.001 0.000I

Table 8.1.3.2-1 Free-Field Time Domain Network Performance

I
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Hidn-9-M=- Seedl I • Seed 3 Averageii snparamet~erAvre
Nodes

M 100.0 100.0 100.0 100.0
I T 100.0 100.0 100.0 100.0

0 A 100.0 100.0 100.0 100.0
All 100.0 100.0 100.0 100.0

MSE 0.001 0.001 0.001 0.001

M 51.0 77.1 89.6 72.6
T 66.7 50.0 89.6 68.8

2 A 100.0 100.0 100.0 100.0
All 33.3 38.5 79.2 50.3
MSE 0.665 0.687 0.560 0.637

U M 100.0 100.0 100.0 100.0
T 100.0 100.0 100.0 100.0

4 A 100.0 100.0 100.0 100.0
All 100.0 100.0 100.0 100.0
MSE 0.000 0.000 0.000 0.000

M 100.0 100.0 100.0 100.0
T 100.0 100.0 100.0 100.0

6 A 100.0 100.0 100.0 100.0
All 100.0 100.0 100.0 100.0

MSE 0.000 0.000 0.000 0.000

Average Performance Across Seeds

Hidden Nodes
Parameter 0 2 4

M 100.0 72.6 100.0 100.0
T 100.0 68.8 100.0 100.0
A 100.0 100.0 100.0 100.0

All 100.0 50.3 100.0 100.0
MSE 0.001 0.637 0.000 0.000

I Best Network Performance

Hidden Nodes
Parameter 0 2 4 .6

M 100.0 89.6 100.0 100.0
T 100.0 89.6 100.0 100.0
A 100.0 100.0 100.0 100.0
All 100.0 79.2 100.0 1 )0.0
MSE 0.001 0.560 0.000 0.000I

Table 8.1.3.2-2 Bottom Time Domain Network Performance
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Hidn Parameter Seedl 1 S Average
Node

M 99.0 99.0 99.0 99.0
T 100.0 100.0 100.0 100.0

0 S 71.9 71.9 75.0 72.9
All 71.9 71.9 75.0 72.9

MSE 0.503 0.502 0.501 0.502

M 99.0 74.0 100.0 86.5
T 99.0 100.0 95.8 99.5

2 S 60.4 38.5 41.7 49.5
All 58.3 25.0 40.6 41.7

MSE 0.656 1.043 0.713 0.850

n M 96.9 99.0 99.0 98.3
T 95.8 99.0 97.9 97.6

4 S 41.7 84.4 83.3 69.8
All 36.5 83.3 83.3 67.7

MSE 0.723 0.255 0.262 0.413

M 100.0 100.0 100.0 100.0
T 97.9 96.9 96.9 97.2

6 S 89.6 85.4 87.5 87.5
All 87.5 82.3 84.4 84.7
MSE 0.236 0.292 0.267 0.265

Average Performance Across Seeds

Hidden Nodes
Parameter 2 4

M 99.0 86.5 98.3 100.0
T 100.0 99.5 97.6 97.2
S 72.9 49.5 69.8 87.5

All 72.9 41.7 67.7 84.7
MSE 0.502 0.850 0.413 0.265

Best Network Performance

Hidden Nodes
Parameter Q2 4

M 99.0 99.0 99.0 100.0
T 100.0 99.0 99.0 97.9
S 75.0 60.4 84.4 89.6

All 75.0 58.3 83.3 87.5
MSE 0.501 0.656 0.255 0.236

I Table 8.13.2-3 Air Time Domain Network Performance
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Best Free-Field Networks

100 1.0
90 0.9
80 0.8 M
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Figure 8.1.3.2-1 Performance for Best Free-Field Time Domain Network

I
Best Bottom Networks

i 100 1.0
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80 0.8

S70 0.7 T
1 60 0.6 ,
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Figure 8.1.3.2-2 Performance for Best Bottom Time Domain Network
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Best Air Networks
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Figure 8.1.3.2-3 Performance for Best Air Time Domain Network

random seeds. The figures show the same data for the single best network at each number of

* hidden nodes.

The Free-field and Bottom networks had very little problem reaching the 100% correct level. Just

as in the frequency domain the neural networks did not have any problem making perfect

* classifications using the time domain representation. The performance on the Air signals is

somewhat worse for the time domain signals. The highest level of performance was for the 6

hidden node condition where the performance reached 87%.

8.1.3.3 Discussion of Performance for Clean-Trained Networks

The performance of the Free-field neural networks trained with signals with no added noise was

always at 100% correct except for the 2 hidden node condition. The 2 hidden node neural

networks only reached 47% average overall correct. Time and frequency domain input networks

performed similarly except for the 2 hidden node cases, in which frequency domain input was

preferable.

The performance of the Bottom neural networks was always at 100% correct except for the 2

hidden node condition. In the 2 hidden node condition, the average percent correct Overall just
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reached 50% in the time domain case. Signal representation was not a large factor in performance

aside from the two hidden node cases. When the Bottom networks were faced with the

challenging condition of having two hidden nodes, Angle performance remained at 100% while

Material and Thickness performances fell. This effect was consistent across signal representation

(frequency and time domains). Angle is apparently easier for these networks to classify. This is

easy to understand for the 90' signals in the time domain, since they have a significantly different

envelope than the other angles. The networks, however, could also tell 0' from 450 signals with

only 2 hidden nodes, and could do so using frequency domain input as well.

The performance of Air neural networks varied greatly a ross the different number of hidden

nodes. In general, the 6 hidden node condition had the best performance with 0 and 4 hidden

nodes very close in performance and the 2 hidden node case well below the others. However, the

best performance on the time domain Air signals was only about 85% correct. This compares to
almost 98% correct on the frequency domain signals. This lower performance was primarily due

to the decrease in performance on Striker when time domain input was employed. Striker was the

most difficult parameter for every case of signal representation and number of hidden nodes.

It is inter,- king to note that the networks trained to classify Air signals as time domain input

performed worse than did networks trained to classify Bottom and Free-field signals. This is the
opposite effect observed in the human results, in which subjects found the Air signals easier to

classify.

i 8.1.4 Clean-Trained Networks Tested with Noisy Signals

The performance of the original networks was evaluated by several criteria. The most natural and

immediate was their ability to classify the original ninety-six test signals. The results of these tests
were described above. The resilience of the networks to the presence of background noise is a

more informative measure, for two reasons. First, a network which is tolerant of noise will

operate under a larger range of signal conditions, which makes it more useful than one which can

only classify clean signals. The lower the signal-to-noise ratio that a network can tolerate, the

more robust a classifier it is. Second, testing the networks on moderately noisy signals provides

information about the generality of the algorithms the networks have developed. In principle, a

network which has learned to classify the signals correctly on the basis of general traits of the
signal classes would be expected to classify correctly an infinite number of examples of any given
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signal class. On the other hand, if the network classifies the signals on the basis of irtifacts

peculiar to the training or testing sets, it may incorrectly classify signals which are even slightly

different from the original ninety-six test signals. By adding sequences of noise to the original
ninety-six test signals it was possible to create many new test signals which resembled the original

signals, but did not match them exactly, and thus test the generality of the networks' algorithms.

The pseudo-random noise generated for this purpose was normally distributed about a mean of

zero, and hence completely characterized by its standard deviation (see Figure 8.1.4-1). Each of
the ninety-six signals in the original test set was used to generate twenty different noisy signals in

each new test set. This redundancy was included to reduce any effects arising spuriously from the
characteristics of particular pseudo-random number sequences. The seed used to start the pseudo-

random number sequences was also varied throughout the tests.

Multiple test sets were created whose standard deviation spanned the range (0.0, 2.0). By testing
the networks on each of these new test sets the resilience of the networks to the presence of noise
was investigated. Results for Bot4H(1)F are shown in Figure 8.1.4-2, in which the root mean

squared (RMS) error and percentage of correct classifications are plotted as a function of the
standard deviation of the noise used to create the test set. As might be expected, with increasing
noise the network's performance deteriorated from the level achieved by the networks on the

original (clean) test set. This behavior was the same for every network tested; as noise increased,

the percent of correct classifications dropped, approaching a plateau value between eight and ten
percent. Remember that the odds of randomly classifying a signal correctly are one in twelve, or

8.33%. The exact rate of deterioration of performance depended on the domain, signal set and

number of hidden nodes.

U The results for the twenty-four best performing backpropagation networks trained with clean

signals are summarized in Table 8.1.4-1. The first two columns list the percent of correct

classifications and the RMS error of each network when tested on clean signals. On a graph such

as Figure 8.1.4-2, these two quantities correspond to the y-intercepts of the percent correct and

RMS error, respectively. The third column shows the noise test 30% point, namely, the standard
deviation of added noise at which the given network's performance dropped below 30% correct.

The noise test 30% point is also shown graphically in Figure 8.1.4-2 for the network Bot4H(I)F.

This latter value, combined with the percent correct, gives some indication of how rapidly the
performance falls to its final value. For example, among Air networks in the frequency doma";-,
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I Figure 1(a)
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Table 1(a): Frequency Domain

Network % Correct RMS Error Noise Test
I Clean Signals Clean Signals 30% Point

Free Oh-3 100.00 0.04 0.26
Free 2h- 1 75.00 0.69 0.14
Free 4h-2 I00.00 0.02 0.25
Free 6h-3 100.00 0.01 0.23

IBot Oh-2 100.00 0.08 0.19
Bot 2h-2 83.33 0.71 0.08
Bot 4h-1 100.00 0.01 0.16
Bot 6h-1 100.00 0.01 0.21

Air Oh- 1 96.88 0.30 0.52
Air 2h-2 77.08 0.67 0.10
Air 4h-2 97.92 0.18 0.50
Air 6h-1 97.92 0.19 0.52

Table 1(b): Time Domain

Network % Correct RMS Error Noise Test
Clean Signals Clean Signals 30% Point

Free Oh- 1 100.00 0.35 0.18
Free 2h-2 54.17 0.83 0.14
Free 4h-2 100.00 0.02 0.19
Free 6h- 1 100.00 0.01 0.28

Bot Oh-2 100.00 0.03 0.41
Bot 2h-3 79.17 0.83 0.15
Bot 4h-2 100.00 0.01 0.33
Bot 6h-1 100.00 0.01 0.36

H Air 0h-3 75.00 0.71 0.04
Air 2h- 1 58.33 0.81 0.03
Air 4h-2 83.33 0.50 0.06
Air 6h-2 82.29 0.54 0.09

Table 8.1.4- i Clean-Trained Networks' Performance Suture,, v

I
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the lowest noise test 30% point is 0.10, occurrng for the to hidden node network. This is much
smaller than the noise test 30% points of the zero, four and six node Air frequency domain

networks (0.52, 0.50 and 0.52, respectively). However, the two hidden node network also

achieved only 77.08 % correct on clean signals - significantly less than the percent correct for the

other Air frequency domain networks. Therefore, while it is true that the two node network falls

from its best performance faster than the others under the influence of noise, the difference is not
as extreme as the noise test 30% point alone would lead one to believe.

With the exception of the two node networks, the networks performed fairly well (more than fifty
percent correct), provided the standard deviation of the noise remained less than or equal to about
0.1. It should be borne in mind that in both the frequency and time domains the original signals
presented to the network were normalized to have values between 0.0 and 1.0. Noise of standard

deviation 0. 1 therefore implies a distribution of noise whose width is 10 % of the signal's

maximum value. From this perspective, the clean-trained networks show some amount of learning

generality in their performance.

I 8.1.5 Networks Trained using Noisy Signals

In the experiments discussed above, noisy signals were used only for testing the networks, and not
for training or validation. Perhaps of more interest is the question of what influence, if any, the
addition of noise to the signals during training has on the performance. It was thought that the

addition of some noise during training would in effect enlarge the training set, and obscure small,

random variations in the signals, forcing the network to learn a more general solution. A network
trained in this way might tolerate larger variations in the test set, performing better on noisy
signals. On the other hand, if too much training noise were added, the networks might not learn to
detect features in the training signals, and consequently would perform very badly, even on clean
test signals. The level of training noise was therefore an important parameter to determine. A
second issue was the choice of validation set, which is used to determine the " best" set of
network weights. It was unclear whether clean signals, noisy signals, or some combination

should be used. The first step then was to focus on a particular network to resolve these two

questions, thereby standardizing the noise levels for the training and validation sets. The network
chosen for these experiments was a 4 hidden node Bottom network using signals in their frequency
domain form.
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8.1.5.1 Noise Level for Training and Validation Sets

The first issue explored was the choice of validation set. Three networks were trained from
identical initial conditions, with a noise level of 0.05, but validated with three different sets. One
set was just the original (clean) test set. A second consisted of signals to which noise with

standard deviation 0.05 had been added and a third contained a mix of the two. As with the noisy

test sets described above, each clean signal was used multiple times to generate noisy validation

signals. For ease of implementation, each signal was used only 5 times for validation sets, instead
of 20. In the set containing the mixture, the clean signals were simply repeated five times to assure3 equal representation. The best weights chosen in each case were identical. Additional tests with

training noise levels of 0.0 (clean training) and 0.10, and the validation sets described above, again
failed to show any differences in best weight selection. Several additional variations in the
validation set were then tried, including noise levels as high as 0.15, with no change in the set of
best weights chosen. These results show that the choice of validation set did not influence the

choice of best weights for the specific case of Bottom, four hidden node, frequency domain
networks. Since the tests indicated no preference for a particular validation set, a standard
procedure for creating validation sets in the other domains using different signal sets remained
unclear. The standard procedure finally set was to use a mixture of clean signals and signals with
noise of standard deviation 0.05, in equal quantity. The reason for this choice was simply that a
result of tests on a single network was being generalized to determine a procedure for all the
networks, and this mixture was thought to be the least "risky" in the event that the other domains
were not identical in their responses to validation sets.

I Once the validation set was standardized, the only remaining parameter to fix was the training noise
level. Once again, a series of initially identical networks was trained, this time with training noise
levels with standard deviations of 0.0, 0.03, 0.05, 0.07 and 0.10. The three curves in Figure

8.1.5.1- I (a) show an enhancement of the classification performance as the training noise level was
increased from 0.0 (no training noise) through 0.05. The largest improvement over the control

network (no training noise) was 16.62%, occurring when the levels of training and testing noise
were 0.05 and 0.06, respectively. Improvement was most striking for test noise of standard
deviation less than 0.24, but the effect was noticeable for values of test noise as high as 1.0. As
the training noise level was increased beyond 0.05 to 0.1, however, the performance dropped

quickly, particularly for values of test noise under 0.1 (see Figure 8.1.5.1-1 (b)). The training

I
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noise level for all subsequent frequency domain networks was thus chosen to be 0.05, since this

provided the most consistent enhancement over the broadest range of testing noise levels.

-- 8.1.5.2 Training Regime

I With all the parameters standardized, Bottom and Air networks in both frequency and time domains

were retrained with noisy signals from the same initial conditions as the best performing clean-

trained networks. For each domain and signal set, a validation set was created which contained

equal portions of clean signals, and signals to which noise of standard deviation 0.05 had been

added. The signals used in the training set had noise with a standard deviation of 0.05 added to

them, and the networks were trained with all other network parameters (i.e. learning rate, number

of cycles, etc.) identical to those used for the clean-trained networks. Among the clean-trained

networks, those with 6 hidden nodes performed in all respects similarly to those with 4 hidden

nodes. For this reason, only 0, 2, and 4 hidden node networks from each domain and signal set

were retrained with noise. After these were trained, the networks were tested over a range. of noise
levels, in exactly the manner described above for clean-trained networks.

8.1.6 Noise-Trained Networks Tested with Clean and Noisy Signals

A typical result is shown in Figure 8.1.6-1, in which the percent of correct classifications is plotted

for the networks Air2H(I)T and Air2H(1)TN. As was the case in the Bottom, 4 hidden node,

frequency domain networks described above, the Air networks trained with noise show improved

resilience to the presence of test signal noise. It is worth noticing that the clean-trained network,

Air2H(1)T, classified clean signals (noise level 0.0) better than Air2H(1)TN. This was true of all
the 2 hidden node networks, and several 0 and 4 hidden node networks as well. This may reflect a

training noise level which is high enough to obscure clues essential to correct classification.

The results for the retrained networks are summarized in Table 8.1.6-1. The first column lists the

name of each network. The next 3 columns show the same performance measures displayed for

the clean-trained networks shown in Table 8.1.4-1. These are the percent of correct classifications

and RMS error from tests on clean signals, and the noise test 30% point described above. The last

column displays the Average Improvement of the networks trained with noise over those trained

without noise. This value is the average difference per test point between the percent correct

achieved by networks trained with and without noise, over the first 21 test levels. On a graph such
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Table 2(a): Frequency Domain

INetwork % Correct RMS Error Noise Test Average Improvement
Clean Signals Clean Signals 30% Point Over Clean-Trained

IBot0H(2)FN 86.46 0.37 0.21 -0.02
Bot2H(2)FN 50.00 0.85 0.12 0.62
Bot4H(1)FN 100.00 0.11 0.23 7.56

Air0H(1)FN 95.83 0.33 0.52 3.14
Air2H(2)FN 70.83 0.71 0.32 18.45
Air4H(2)FN 97.92 0.21 0.40 -2.66

Table 2(b): Time Domain

Network % Correct RMS Error Noise Test Average Improvement
Clean Signals Clean Signals 30% Point Over Clean-Trained

BotOH(2)TN 100.00 0.03 0.39 -0.47
Bot2H(3)TN 66.67 0.78 0.26 7.83
Bot4H(2)TN 100.00 0.03 0.35 5.10

Air•H(3)TN 50.00 0.90 0.08 2.87
Air2H(1)TN 41.67 0.90 0.07 5.73
Air4H(2)TN 68.75 0.64 0.23 15.90

Table 8.1.6-1 Noise-Trained Networks' Performance Summary

iI

I

I
I
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as Figure 8.1.6- 1, this value is proportional to the area between the curves, over tie range (0.0,
0.4) in test noise levels. A positive value indicates that the network performance improved with
training using noisy signals, a negative value shows the reverse.

For most of the networks, training noise had either no effect on performance, or a beneficial one.
There are, however, three negative values appearing in Table 8.1." I which deserve some

scrutiny. The negative values occurring for Bot0H(2)FN and BotOH(2)TN are negligible.

Comparisons of these two networks to their clean-trained antecedents are shown in Figure 8.1.6-2.
It is clear from the graphs that the clean-trained networks' performance is essentially unchanged by

training with noise, except in with low noise levels where the standard deviation less than 0.04.
This can be seen in Figure 8.1.6-2(a) for the Bottom, 4 hidden node, frequency domain network.

By contrast, the Average Improvement of -2.66 achieved by Air4Fl(2)FN indicates that the

performance was actually significantly worse for the network trained with noise (see Figure

8.1.6-3). These few results are contrary to the general trend followed by all the other networks

trained with noisy signals.

I There are at least two possible explanations of these contrary results. One is simply that the initial
conditions (i.e. the pseudo-random number seed) may play a role in determining the quality of

solution. The origin of the negative results could be some arbitrary property peculiar to the seed
and network architecture. Another possible cause has to do with the standardization of the noise
parameters. Standard training and validation noise levels were set to those which produced the

largest effect on the Bottom, 4 hidden node, frequency domain networks. The network showing

the negative results is an Air network, trained from a different pseudo-random number seed. There

is no guarantee that the same parameters will cause the same effect in these two cases. Additional

experiments with different training and validation noise levels and pseudo-random seeds would be
necessary to determine the cause of the negative results.

Excepting the results in this one instance, the effect on network performance of training with noisy
signals was to enhance the networks' abilities to classify signals with noise added to them

correctly. In some cases, the networks trained with noisy signaL did not perform as well on clean
signals. This usually occurred in the 0 and 2 hidden node networks. In some cases the

improvement persisted for testing noise levels at least as high as 1.0.
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8.1.7 Summary for Backpropagation Networks

The performance of die backpiupagauon networks was very high for properly configured and
trained networks. Bottom and Free-field networks performed much better than subjects on the

same tasks, in part due to advantagcs in the input representations of the signals and the netwcrk'ý'

ability to discern detailed differences in those representations. Air networks also did well, anu

showed the same tendency as the subjects to have the most difficulty judging Striker. Adding
artificial random noise to the signals applied to a network during training usually improved the

performance of the network on noisy signals.

While networks with no hidden nodes performed well, they did so with many more parameters

than other networks, allowing more arbitrary classification schemes. Networks with four hidden

nodes did well on the classification tasks with relatively few parameters, and were selected for
further analysis.

8.2 INTEGRATOR GATEWAY NETWORKS!
Another network used to process the signal data was an integrator gateway network (IGN). Its
processing is similar to that in the backpropagation network (BPN), but it is fundamentally

different in the way in which it handles incoming data. The IGN has front-end layers that allow it

to accumulate the values from successive patterns of incoming data and feed the accumulated data

through the backpropagation-like portion of the network. The use of this type of network is driven
by the need to evaluate information as it changes over time. It is particularly useful for data such as

spectrograms which contain frequency information over time, and is a unique approach to network

training used by Moore, Roitblat, et. al in their research on dolphin echolocation 4.I
8.2.1 Network Architecture

Moore and his colleagues used the IGN on the principle that dolphins accumulate information while

echolocating and identifying object.K nd use the sum of what they've heard to make the

identification. In much the same manner, the IGNs are used here to process spectrogram data, or
frequetry information in the signals over time. The structure of the network in Figure 8.2.1-1

shows an input layer, three data preprocessing layers, and a hidden and an output layer such as

I
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those found in BPNs. Two scalar nodes are also present which are used in scaling the data trom

layer to layer.

For the IGNs each input pattern is considered to be a portion of a stream of patterns. The signals

are presented to the networks as windows of a spectrogram created by taking a Fast Fourier

Transform (FFT) as a sliding window is passed over the signal. All windows of frequency data in

one signal are considered to be patterns in one stream. For this reason a data pattern is introduced

to the network at the input layer and is fed to the integrator layer where it is added to the activation
from previous patterns in its stream. The cumulative values then are passed through the

normalizing layer where they are treated as a vector and fit to the unit circle. This normalization

process controls the activation levels that will be introduced to the hidden layer where the

squashing function must not become saturated. Originally the scalar node between the input and
integrator layers was meant to prevent saturation, but with this particular application the activation

from the signals as time progresses is too high for this scalar to handle sufficiently. The hidden

and output layers function as in a general backpropagation network, with the simple addition of

another scalar which controls the activation levels going into the output layer. The same target

pattern is used for all patterns accumulated from a single stream of inputs. The accumulation in the
network is reset at the start of each new stream by the start of stream marker. This marker affects

the stream summation produced by the integrator and gateway layers.

During training the processing for the IGN was accomplished using the summation methods

shown in Table 8.2.1-1. The sigmoid function was used as the squashing function on both the
hidden and output layers. The accumulation processing of the IGN required that the input patterns

in each stream be presented in non-random order. For this reason the cumulative delta rule was

used for updating the weights on the hidden and output layers of the network. Using this rule the

weights were updated each time all patterns in the training set had been presented to the network.

8.2.2 Signal Input

3 The accumulation nature of the integrator gateway network structure lent itself to training on

spectrogram data for both the Bottom reflection and the Air signals. The spectrograms were

created for both signal conditions using the time domain signals described earlier in Sections

8.1.1.2.2 and 8.1.1.2.3. For both conditions the spectrograms were generated by moving a
sliding window across the signal, applying a Hamming window filter, and taking an FFT of the

* 8-41

I



!

I,.csulting points. The sliding window was advanced half of the window's width for each section

of the spectrogram. Some details differed for the two conditions and will now be detailed.

1AY91 Summaton T)=

Input Summation
Scalar Summation
Hidden Summation
Output Summation
Gateway Summation of Products
Integrator Cumulative Summation
Normalization Normalizing Multiplicative (fits vector

to the unit circle)

Table 8.2.1-1 Summation Types Used For IGN LayersI
Each of the Bottom time domain signals aligned for the back of the box was 1333 points in length.

The sliding window was 64 points wide and was advanced 32 points at a time. Taking an FFT of

one window resulted in 32 unique frequency values. Due to the filtering that had been performed,

which was detailed in Section 8.1.1.2.2, bins 1-6 and 19-32 were excluded from the resulting

data for each window. This provided 12 frequency amplitude values for use as the input for one

data pattern in a Bottom signal's stream. Since all of the Bottom signals were of the same length,

this method resulted in signal streams consisting of 42 time windows of frequency data.

The same type of processing was applied to the Air time domain signals with some minor changes.

The duration of the Air signals of up to 32456 points dictated that the sliding window for this

process be increased to 512 points. In this case the window was advanced 256 points at a time.

The FFT then produced 256 frequency amplitude values. It was desirable to have an input with

fewer than 50 nodes, so the 256 bin values were averaged every 8 values. This procedure resulted

in 32 frequency bin values per input pattern. The variation in the duration of the Air signals
resulted in streams with between 33 and 126 time windows of frequency data per signal.

The training set for the Bottom IGN contained signals which were of equal duration. Therefore,

one spectrogram from each signal class for each individual instance 1-8 was included in the

training set. The Air signals, however, were of greatly differing durations. In order to represent3 each signal class equally, the shorter signals were repeated in the training set. In other words, the

longest signal had its instances 1-8 included once in the training set. The other signals' durations3 were compared to the longest signal's and a threshold of 65% was used to determine how many
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repetitions of each shorter signal was to be included in the training set. Table 8.2.2-1 shows each

signal class, the number of sliding windows in its spectrogram, and the number of repetitions of

each instance included in training.

Q Number of Windows Repetitions for Training

BIM 41 3
BIP 33 4
BIW 33 4
B5M 126 1
B5P 125 1

B5W 108 1
SiM 121 1
SIP 95 1
S1W 84 1
S5M 67 2
S5P 67 2
S5W 64 2

Table 8.2.2-1 Input Window Repetitions For Bottom IGNI
8.2.3 Network TrainingI
The networks were trained with varying random number seeds, learning and momentum rates, and

numbers of hidden nodes. The Bottom reflection processing produced signals with 12 points per

window, thus the Bottom networks had 12 input nodes. In the Air data the 64 point sliding

window produced 32 point FFTs which dictated that there be 32 input nodes. Each network had

seven output nodes, one for each parameter value for Material, Thickness, and Angle/Striker. The

output nodes for the IGNs were identical to those used in the BPNs and were shown in Table

8.1.2-3. The target values also functioned in the same way. A target of one for an output node

meant that the window of spectrogram input belonged to a signal with that parameter. For example

an S50 class signal had targets of one on its Steel, 5%, and 00 output nodes. The targets for the

remaining four nodes then were 0.

Compared to typical backpropagation networks the integrator gateway networks with spectrogram

data as input required an inordinately large number of iterations for their performance levels to

peak. The differences were attributed mainly to the input data format. Many input patterns, i.e.
iterations, were required to represent a single instance of a signal. Even for the Bottom set where
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the signals had only 42 windows of data per signal this meant that 4032 iterations (42* 12*8,

windows x classes x instances) were presented to the network before a weight adjustment could be

made. For the Air networks the weights were adjusted every 11536 iterations. From these

numbers it is easy to see why a very large number of iterations were necessary for the network to

achieve level classification performance.

These networks also required very small learning rates. A typical learning rate for a BPN was on

the order of 0.1. The ICNs which performed above chance could only tolerate learning rates under

0.01, while rates under 0.005 usually proved to be most successful. It was judged that large

learning rates affected the weights badly because such a large amount information was accumulated

on the different windows of signals over the entire training set before the weights were adjusted.

When the small learning rates were used, momentum rates more typical of BPNs were used

successfully with the IGNs.

Due to the large number of iterations involved in training, the networks often required many hours

to achieve above-chance classification performance for the individual parameters. This necessarily

tlimited the number of different networks feasible to be attempted. The original approach involved

running a small set of networks with 2, 4, 6, and 8 hidden nodes. In the interest of time, once it

was discovered that the 6 and 8 hidden node networks did not improve the performance largely

over those with 4 hidden nodes, the remainder of the networks run used 4 hidden nodes. For the

Bottom condition 30 networks were trained and for the Air signals 18 networks were trained.

The performance for each of the parameters Material, Thickness, and Angle/Striker, as well as the
MSE tended to fluctuate during training. In other words, it was rare that a network tested every

500,000 iterations showed a consistent increase in its percent correct for each of the parameters, as

well as a steady decrease in the MSE overall. This reason, combined with the fact that the

networks took a large amount of time to train, led the researchers to stop training when it was

judged that the percent correct for the individual parameters had peaked or leveled.

The networks were tested against instances 9-16 of each of the 12 signal classes and their

performances recorded. The tests consisted of presenting each window of each signal to a network

and recording the network's response for each of the parameters. The percent correct was then

computed for each parameter, as well as for the case where the three parameters had to be correct

simultaneously in order for the overall measure for the signal to be correct. The network was
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judged to have a correct classihcauon of a parameter when the output node corTesponding to the

signal's actual parameter was the highest for all nodes corresponding to that parameter. For

example, if the first window from the tenth instance of the B54 signal class were presented to the

network, the response from the Brass output node would have to be higher than that from the Steel

output node in order for the network to have a correct Material classification for window one of the

sixth B54 signal. From this data the percentages and MSE were computed for: each window

(collapsed across signal instances and classes), each signal instance (collapsed across windows),3I each signal class (collapsed across windows and signal instances), and the entire network

(collapsed across windows, and signal instances and classes). These different measures of

3 performance are explored in more detail in the following sections.

The most successful Bottom reflection network had 4 hidden nodes, was trained with a learning
rate of 0.005 on the hidden layer and 0.003 on the output layer, and with a momentum factor of

0.3 on the hidden layer and 0.2 on the output layer. It was trained for 8,500,000 iterations where

each iteration included the presentation of one input pattern. The most successful Air signal

network also had 4 hidden nodes, but its learning rate was 0.003 for the hidden layer and 0.001

for the output, and it had no momentum factor on either the hidden or output layers. It was trained

for 10,000,000 iterations of the Air signal patterns. The results of each of these best performing3 networks is discussed below.

8.2.4 Results

The unique presentation of the signals as windows from spectrograms changes the manner in

which the networks' performance is evaluated. Typically a network's overall performance by

parameter is the means by which it is judged. Here, the performance measures for each parameter

can be viewed from an overall perspective or relative to the individual spectrogram windows. In

each case, the performance computations for the Material, Thickness, and Angle or Striker

parameters are collapsed across windows, and signal classes and instances in the test set, as well

as for the network as a whole. Also, the mean squared error (MSE) measures the average error per3 output node of either a window, class, instance, or the entire network.

The cumulative processing of the IGNs lends itself to the concept that the network should perform

at chance levels until enough windows from a stream have been presented that there is sufficient

information accumulated in the network from which a judgment can be made. In other words, as

8-45

I



I
more windows from a stream are presented to the network, it has more intormation on which to

base its identification of the parameters. The performance levels for the Air and Bottom networks

differ greatly both by network and by where in the sequence of windows they perform well.

8.2.4.1 Air Signals

It is interesting then to note that the best performing network trained with the Air signal

spectrograms achieves perfect performance on Material and Thickness at the first window's

presentation, and maintains that performance across all windows. From this it can be assumed that

there is information even at the beginning of each signal that captures the essence of Material and

Thickness, and thus allows the network to make correct identifications with only one window's

frequency information. One explanation for the network's unexpectedly fast identification involves

the Air signals themselves. These signals are aligned by their initial speculars in which the energy

* is caused by the Striker contacting the target. The 64 point window of the signal used to produce

the first 32 point spectrum input pattern thus contains a large amount of resulting signal energy. It

is proposed that this impact energy contains enough information for the network to correctly

identify the Material and Thickness of the signal.

Conversely, the Air network's performance on Striker is lower and less consistent. It achieves its

maximum correct identification percentage of 73% for the Striker parameter by the 13th window

(of 126 total windows), but does not maintain it. Thereafter, performance slowly decreases to a

level of 66%. The network's MSE is at its lowest of .062 at window ten and gradually increases

as the Striker performance decreases to .074. There are particular Strikers which are consistently

difficult for the network to identify while others are classified correctly for 85-100% of the tests.

The performance on Plastic Striker for Brass targets is a negligible 1% and 6% respectively for
targets with 10% and 5% shell thicknesses. Likewise the network never (0%) identifies the Striker

as Metal for Steel targets with a 5% shell. Although the performance of 61% for Metal striker on a

Steel 10% shell target is above the statistically significant level of 43.75%, it still indicates that the

network struggles with this classification. Overall, though, the performance for Striker is 67.5%,

which is significantly above chance. The performance values on Striker for this network are

similar to those from the backpropagation networks trained with both time and frequency domain,

although the Strikers with which the different networks have difficulty vary. Given that their

overall performance is lower and less consistent, the three Best human performers also have more
trouble identifying Striker than they do Material and Thickness.

8-46

I



A theory about the decrease in performance by window for the Air IGN involves the idea that the

majority of the frequency information from the Striker impact is available only in a set of several

windows at the beginning of each signal. Although this information is retained in the accumulation

of frequency energy over the life of the signal and in the way in which the target vibrates, its

contribution to the overall frequency content becomes significantly lower in proportion to the target

reverberation energy as the windows progress. While Striker performance does fall, the overall

level is 67.5% and the decrease is gradual. Since the network performs statistically above the

chance level of 33.3% it can be assumed that it retains and can identify information about the

striker type throughout the set of input windows.

Material Thickness Striker Overall MSE

Air 100.0 100.0 67.5 67.5 0.071

Chance 50.0 50.0 33.33 8.33 NA

Significant 61.0 61.0 43.75 16.67 NA
Levels

Table 8.2.4.1-1 Average Air IGN Performance Compared to Chance Levels

The Air network's overall performance levels are shown in Table 8.2.4.1-1. It is of interesi that

Striker proves to be the most difficult parameter considering the results for the Bottom reflection

networks and experiments discussed in other portions of the report. Comparing Air results to

those based on Bottom data the findings show that for the underwater signals Angle is easier to

distinguish than Material and Thickness. Although Striker is not parallel to Angle in the

classification task, due to the radically different collection environments, the difference in

performance is still notable. Remember that all of the signals were created using the same physical
targets so they share the same Material and Thickness characteristics. The point here is simply

that, regardless of the common targets, the networks are not able to learn Material and Thickness to
the same degree for the Bottom and Air signal conditions. It is difficult to conclude whether the

difference stems from Angle characteristics being innately easier to hear or from the Striker being
so difficult to discern that the solutions are concentrated on the Material and Thickness distinctions.
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8.2.4.2 Bottom Signals

The performance of the best network trained with Bottom reflection data is markedly different and

less straight-forward than that for the Air-trained network. For this reason, it is investigated on a

more detailed level. Its particular trends in performance by window are examined. Also, in order

to compare the Bottom network's performance to that of the human subjects the test signals'

windowed output data is scaled and the resulting dimensions are compared to those from the

human scaling solutions.

The Bottom reflection data integrator gateway network (IGN) has performance levels which are

significantly above chance for all parameters separately, as well as for the three parameters together

which is referred to as the overall condition. The percent of correct identifications follows in Table

8.2.4.2-1.

I Material Thickness Angle Overall MSE

Botm67.4 64.9 76.0 37.5 0.180

Chance 50.0 50.0 33.33 8.33 NA

Significant 61.0 61.0 43.75 16.67 NA

Levels

Table 8.2.4.2-1 Average Bottom IGN Performance Compared to Chance Levels

These numbers are based on the testing methods described above where the test set consists of
instances 9-16 of the 12 signal classes. The signals consist of windowed spectrogram data as

before and there are 42 windows in each signal. In particular this section will concentrate on

examining the performance by window, and the resulting data as it is used as input to

multidimensional scaling algorithms, and compared to the dimensions from human data scaling

solutions.

I As in the case of the Air network, the Bottom IGN is less successful on certain parameters for

given signal classes than for others. The details of this are readily apparent in Table 8.2.4.2-2
which shows percent correct and MSE for parameters collapsed across windows and test instances

giving performance by signal class. Note that the Material and Thickness performances on class

S 10 are particularly low, and that four classes have a 0% overall success rate. These low figures
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imply that although the network has learned features of the signals which indicate Brass or Steel,

the S 10 class contains the Brass features and thus is often misclassified. The results will be
discussed in further detail from the perspective of classification percent correct by window.

The performance of the network as the spectrogram windows progress shows expected as well as
unexpected results. The overall trend of the performance is expected to be near chance levels until

the network receives enough information in a stream to determine the parameters associated with

that stream's signal class. After that, it is reasonable to expect the performance to increase as more
windows' information is added to the network's accumulation for that stream. At some point, the

new information available in the signal's energy will taper off relative to the overall stream's

energy, thus the network's performance can be expected to level off in the later windows.

Class Material Thickness A Overll MSE

BIO 0.99 0.51 0.83 0.35 0.174
B14 0.89 0.90 0.87 0.77 0.101
B 19 1.00 0.75 0.74 0.74 0.073
B50 0.96 0.61 0.91 0.57 0.166
B54 0.89 0.38 0.54 0.00 0.214
B59 1.00 0.26 0.74 0.00 0.178
S10 0.02 0.07 0.97 0.00 0.253
S14 0.25 0.90 0.86 0.25 0.243
S19 0.64 0.75 0.71 0.60 0.166
S50 0.50 0.97 0.97 0.50 0.188
S54 0.24 0.81 0.16 0.00 0.278
S59 0.71 0.88 0.80 0.71 0.122

Table 8.2.4.2-2 Bottom IGN Performance by Class Across Windows

Closer observation of the network's performance reveals unusual values for the Angle parameter in
the first ten windows. It is important to remember that the bottom reflection data contains just that,

bottom reflection, and the actual energy from the target return is not part of the signals until
approximately the eleventh window of data. This can be seen most clearly in Figure 8.2.4.2-1 in

the comparison of a signal containing only bottom reflection data to a B 19 class signal in which the

target's energy is embedded in the bottom return. Figure 8.2.4.2-2 shows that the average percent

correct for Angle in the first 11 windows is 55%, while chance performance is 33.3%.

Investigation of this phenomenon requires observing the performance for each of the 0', 450, and

90' angles. Their performance across windows can be seen in Figure 8.2.4.2-3. The interesting
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Figure 8.2.4.2-1 Averaged Signals B19 and Bottom Reflection Only
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I
aberration in this graph is that the performance for both tie 00 and 450 signals is well above chance
until window eleven, although the target return is not present in the signal at that point. After that

the 450 performance drops dramatically, while the 0' signals take a small, but relatively

insignificant dip. The 90' signals' percentages do not follow the expected chance performance

trend in their first eleven windows either. The network is classifying almost all of the initial 90'

signal windows as being from 00 signals, instead of randomly "guessing" their true identity. In
some way the network has learned anomalies about the bottom reflection portion of the signals that

allow it to classify the 00 and 450, but not the 90', signals. For this reason the performance is

above the expected level of chance in the first several windows.I
Once the network gets beyond the first windows, it begins to perform more as expected. Figure
8.2.4.2-2 shows that the performance rises for all parameters in a steady manner, and peaks by

window 31 where the amount of signal energy added to the sum for a stream in the network starts

to become proportionally small. This display of expected behavior makes windows 13-31, over

which the performance is on average steadily increasing, a logical subset to use in comparing the
Bottom network's performance to that of the human subjects. Due to the windowing nature of the

spectrogram data, and therefore the results, a method of direct performance comparison is

generated. It is decided that multidimensional scaling of the confusions produced by the networks
over the windows of interest will be the best way of equating the results with those from the

human experiments.

Scaling the results from the Bottom network involves creating confusion matrices from its resulting

data. This is accomplished in the same manner as for the human subjects, and the process is

described in Section 7. Each output from the network is tallied in a matrix of actual versus
classified signals. In other words, if a network is given an instance of a 1319 signal and identifies

it as a B59 signal, the B 19 row, B59 column has one added to it. After the output for all of the
signals has been tallied, the matrix contains similarity data which represent the ways in which the

I signals are confused by the network. A confusion matrix is created for each window in the set of

increasing windows 13-31. Scaling solutions are generated for several sets of windows, and their

resulting dimensions are examined. The solutions are produced by running an individual

differences scaling algorithm using the windows' confusion matrices as input. Since one network
produced all of the confusions, the scaling is run in the "unconditional" condition. This means that

the raw confusion numbers can be treated as equal from matrix to matrix. The solutions produced
by the scaling runs are examined below.
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The three-dimensional solutions are chosen as the best comparison dimensions due to the fact that
the human dimension solutions evaluated contain three dimensions. A subset of windows 13-31,

including 13, 17, 21, 23, 25, and 29, are examined first. The subset's scaling dimensions -ý
shown in Figure 8.2.4.2-4, where it can be seen that their solution is very similar on dimensions

one and two to the two scaling solutions for the Best and single top performers. The dimensions
from the solutions for the human performers were shown in Figures 7.4.2-1 and 7.4.2-2.

Note that the first dimension in each of the three figures is divided by the 90' signals versus the
450/00 signals. This implies that more network and human classifiers could discern the 90' signals

from all others better than they could with any other characteristic in their identification schemes. It
* is unimportant that the order of the signals along the dimensions appears inverted from low to

high. What is important is that the relative order of the signals on the three first dimensions is
similar. The Bottom IGN solution orders the 90' signals on this dimension very similarly to 90'

signals on the Best Bottom first dimension. In particular, note that in both cases the S59 signal
class is separated from the other three 900 classes. These two solutions also have three of four 00
signals lower on the dimensions than the 450 signals. The outlying S50 class is also closest to the
middle than any of the other 45'/0° classes for both solutions.I
The second dimensions for all three solutions split the signals into three separate Angle categories.
As in the case of the first dimensions, the parallels among the second dimension distributions is
marked. The 450 classes are at the lower end of the dimensions, the 90' classes are clustered in the
middle, and the 00 signals are at the high end. Although, for the network, the BI0 class was with

90' signals and S54 was with the 00 group, the similarities are still striking.

I From the parallels seen in the first two dimensions for the three Bottom scaling solutions, it can be
concluded that the network and the human subjects concentrate on similar features of the signals
when performing the classification task. The fact that the data from both the humans and the
network produced two of three dimensions devoted to Angle attests to this parameter's importance
in all three solutions. The performance for the three also shows that Angle was the easiest of the

parameters to identify.

I Although the previously described subset's solution best matches those of the humans, the entire
increasing portion of the network needs to be included in the examination in the interest of
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thoroughness. Comparison of the dimensions for network windows 13-31, shown in Figure
8.2.4.2-5, and for the two human solutions reveals an interesting difference in their approaches.
The first network dimension matches the two second human dimensions. However, one can look

at the overall solutions as being more similar than would seem at first glance. Although the three
first dimensions show similar signal class distributions, this is particularly true for the network and

the Best performers' solution. For these two solutions S59 is separate from, although still

clustered with, the other 90° signals. Also, the 450 signals are closest to the 90' signals and have
S50 incluided with diem. The other three 00 signals are at the high end of both dimensions as well.
The network's second dimension is not as well separated by Angle as the two human second

dimensions. For the network dimension, the 900 and 00 signals were intermixed while the human
dimensions distinguished them perfectly. Even so, with the exception of the signal class S54, the
placement of the 450 signals at the extreme low end of the second dimension is common to all

classifiers.

I Although the network scaling solution using data from windows 13-31 has remarkable similarities

to the human solutions, there are also noteworthy differences. For instance the clear separation of
the three Angles on the network's first dimension, which only occurs on the second human

dimensions, shows that the network's output data reflects this distinction more. Also, the
network's third dimension divides by Material, with the exception of the classes S19 and S 10

being located among the Brass signals, while none of the human dimensions breaks down by
Material. Additionally, the Steel 5% signals are at the high end of the third network dimension.

The network's performance for Material and Thickness actually reflect even more of an ability to

discriminate these parameters than is reflected in the separation of these parameters on the three

network dimensions. In general the network and humans show common uses of signal

characteristics as reflected by their scaling solutions for Angle, but not for Material and Thickness.I
The investigation of the similarities between the network and human approach to the classification
is continued by looking at correlations in their data. Correlation measures were computed using

the values of the signals as they were distributed along the dimensions for the network and two

human scaling solutions. The correlations can be seen in Table 8.2.4.2-3. The similarities seen

between the first dimensions from the network's and the Best Bottom's solutions are reflected in a

very high inverse correlation of -0.95. Likewise the network's and N6's first dimensions have a

high inverse correlation. The relations are inverse in both cases due to the opposite ordering of the
signals along the dimensions. Although 0.70 is the cutoff for statistical significance at the one
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I
percent level, the levels for the second dimensions in both cases are in the 0.6+ range. This

indicates that although they aren't correlated beyond a doubt, there is a high measure of relation

between them. The high correlation values for the different dimensions serve to reinforce the

conclusions from the observations discussed above.I
BEST

SBestBott DimI BestBott Dim2 BestBott Dim3

Winl3-31 Dim1 -0.95 0.28 -0.17

Winl3-31 Dim2 0.14 0.65 0.40

Winl3-31 Dim3 -0.08 -0.20 -0.06

N6

Bott N6 Dim 1 Bott N6 Dim2 Bott N6 Dim3

Winl3-31 Dim 1 -0.88 0.28 0.33

Winl3-31 Dim2 0.21 0.63 0.37

Win 13-31 Dim3 -0.09 -0.2 -0.42

Table 8.2.4.2-3 Correlations of Bottom IGN Windows 13-31 and the Bottom Best and Subject
N6's Scaling Solutions

As described in Section 7, the subject weights from the individual differences scaling solutio;,

another way of viewing the relations between subject sets. For the Bottom integrator gateway

network, the subject weights show relatively little variation in the use of the three dimensions.
This is different than what is experienced in the human dimension solutions discussed earlier. The

human subjects tend to use the dimensions differently, both with respect to other dimensions in

their solutions and to other subjects. The network shows a consistency of dimension use that

holds across "subjects," windows in this case, as well as among dimensions for one window.

Table 8.2.4.2-4 does show some dimension use difference in that the angles for the first dimension

are smaller, thus it is being used to a slightly greater extent than dimensions two and three. The

overall importance measures for the three dimensions also vary less than those for the human

solutions. It is interesting that, in general, the networks use the dimensions in a more consistent

manner than the humans, yet their results are strikingly similar.

I
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BEST

Su bject Weights Anp1es

I Window Diml Dim2 Dim3 Diml Dim2 Dimiii Weirdness
13 0.325 0.289 0.274 50.746 55.797 57.822 0.014
14 0.320 0.275 0.277 50.639 56.994 56.723 0.035
15 0.325 0.289 0.273 50.737 55.794 57.834 0.013
16 0.321 0.291 0.268 50.961 55.196 58.210 0.010
17 0.319 0.290 0.271 51.262 55.237 57.841 0.003
18 0.310 0.297 0.270 52.364 54.169 57.770 0.019
19 0.320 0.306 0.270 51.940 53.866 58.550 0.024
20 0.326 0.303 0.269 51.180 54.380 58.834 0.021
21 0.325 0.302 0.272 51.335 54.576 58.455 0.014
22 0.325 0.290 0.285 51.334 56.145 56.832 0.022
23 0.324 0.295 0.275 51.198 55.247 57.900 0.004
24 0.326 0.304 0.276 51.572 54.568 58.205 0.011
25 0.325 0.294 0.286 51.642 55.749 56.907 0.017
26 0.326 0.298 0.284 51.644 55.445 57.216 0.011
27 0.325 0.302 0.286 51.986 55.158 57.145 0.013
28 0.325 0.292 0.288 51.602 56.104 56.590 0.025
29 0.326 0.304 0.271 51.336 54.338 58.707 0.020
30 0.326 0.302 0.281 51.678 54.970 57.670 0.005I 31 0.326 0.311 0.276 51.894 53.908 58.555 0.024

Oveal Dimi Dim2 Dim3
Importance 0.105 0.088 0.077

Table 8.2.4.2-4 Bottom IGN Scaling Solution's Usage Measures

I 8.2.5 Summary

The IGNs examined in this section proved to be capable discriminators of parameters for both the

Air and Bottom signal sets. The Air network's perfect performance on Material and Thickness is

outstanding, and matches the best BPN's performance. Its 67.5% correct identification of Striker

is significantly above chance, although it does not match the performance from backpropagation

networks. Note that the human subjects, as well as the backpropagation networks, had the same

relative success with Material, Thickness, and Striker as did the IGN. The Bottom signals showed

good results as input to this type of network. The IGN performed statistically above chance for

I each parameter individually, as well as overall, although it did not match the perfect performance of

the Bottom BPNs. One of the most interesting aspects of the IGN's performance involved its

Srelationship with the human scaling solutiors based on Bottom data. The scaling dimensions and
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the Bottom IGN share several characteristics in the ways in which they approach their solutions.
They each stress the Angle parameter in very similar manners. This is particularly interesting
considering that time windows of frequency data were the input to the network. It gives credence
to the theory that the humans are using both time and frequency domain information in performing

the classification task, and shows that their approach can be mimicked by the integrator gateway

I networks.

I
I
I
I
I
I
I
I
I
I
I
I
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* 9.0 SIGNAL STATISTICS

Models of the signal scaling dimensions were required for comparison to the strategies of nodes
from the neural networks described in Section 8. The primary building blocks of these models

were certain parameters of the signals which fell into three classes. The first class was a group of

parameters computed as statistics of the frequency distribution of a signal:

* Mean

Mode

* Standard Deviation

Skewness
Kurtosis

Low Frequency Slope
High Frequency Slope

The second class of parameter was a pair of measures computed in the time domain:

Decay Amplitude

Decay Damping

Finally, the Air signals were also characterized by fitting a set of sine waves to the signals and
taking the following parameters of those sine waves:

I Curve Fit Amplitude

Curve Fit Decay Coefficient

Curve Fit Frequency

Curve Fit Phase

9.1 FREQUENCY DISTRIBUTION AND TIME DOMAIN MEASURES

The basis for the signal statistics was the frequency distribution of the signals. This was computed

for each signal by first taking the Fast Fourier Transform (FFT) after a Hamming window was

applied. At each resulting frequency point the real and imaginary parts were squared and the

squares were summed.

I [9-1
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P(i) = Xre(i)2 + Xim(i)2

The frequency distribution of a particular signal was treated as a probability density function (pdf)

by dividing each point by the sum of energy at all points.

n
p(i) = P(i) I X P(i)1 i=1

where n differs by signal category (Free-field, Bottom, Air).

The spectral moments were then computed from the pdf as follows:

n
M1 = I f(i) p(i)

i=1
n

M2 = Z (f(i)- M1) 2 p(i)
i=l

n
M3 = Z (f(i)- M1) 3 p(i)

i=l
n

M4 = l(f(i) - 1)4 p(i)

where f(i) is the frequency at point i.

I The mode of the distribution is the frequency with the maximum energy. The first moment (M1) is

the mean of the sample distribution, which in this case is the mean frequency. Skewness and

_ Kurtosis are computed as:

Skewness = M 3 (M 2 )3/2

Kurtosis = (M4 I M 22) - 3.

The high and low frequency slopes of the distribution were computed as a means of measuring

how quickly the distribution fell off from the peak frequency. Taking the energy at each bin in the

range from 0 to the mode, the slope of the best-fit line was estimated by a least-squares linear
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I
regression. This is the low frequency slope. The high frequency slope is computed in tile same
manner using the energies at frequencies from the mode up to the Nyquist frequency. These
measures are most useful for characterizing the underwater sounds, for which the insonifying
frequency of 400 kliz can be expected to be extremely close to the modal frequency of the reflected

I signal.

Two further measures used to characterize each signal were computed in the time domain. These
measured the damping characteristics of the Free-field and Air signals. To compute the measures a
signal was rectified, and the resulting positive values were low-pass filtered in the frequency3 domain. The filter was applied by taking the FTT of the signal, setting the magnitude of the
frequencies we wished to eliminate to zero, and taking the inverse FFT. This process is described

I in Section 4.

The peak of the Free-field and Air signals is at the start of the signals. Starting at the peak a
decaying exponential was fit to a fixed number of points in the signals by minimizing the mean
squared error of the curve. This curve is characterized by its initial decay amplitude and its decay

damping constant.

9.2 CURVE FIT MEASURES

Another method for extracting features from a complicated time domain signal was to fit a
parametric function to the signal using standard minimization techniques to determine the values of
the parameters. It was hoped that the "best" parameters so determined would correlate well with

hidden node behavior and human subject results, and so afford insight into how both humans and
networks classified the signals. Due to the large amount of effort required for operations of this3 type, the curve fitting procedure was restricted to the Air signal set. The reason for choosing these
signals over the Free-field and Bottom was that the human subject dimensions for the Air signals
were more complex than for Bottom or Free-field signals. A meaningful result from curve fitting
to the Air signals would aid in the modeling of these dimensions more than a similar result from

I Free-field or Bottom signals.

Other considerations also favored the choice of the Air signal ,set. The Air signals showed the

largest variation between different instances of the same signal class. This made feature extraction
"by eye" more difficult, and the algorithms developed by networks more subtle. Curve fit
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paraniiters could be used to help clarify qualitative differences and similarities between the signal

classes. The Air signals were also the longest signals of the three sets. with the la-gest sign, '-to-

noise ratio, and thus contained the most detailed information. A carefully chosen fitting function

could condense and extract such information, capturing details which were averaged away by other

analytical procedures. A good result from a curve fit could be used to generate a fairly accurate

approximation to the original signal. In this sense it was a "more accurate" means of extracting

information.I
At the outset, it seemed that finding a form for the fitting function would be difficult in the case of

the Air signals, due to their long length. In general, the longer a data series, the larger the number

of parameters needed to fit the data well. The introduction of more paran-tters ultimately would

cause problems with the convergence, stability, and interpretation o" the fit results, however. It
was also desirable to find a form for the fitting function in which the parameters had some ii.trinsic

physical meaning.

Fortunately, two qualities of the Air signals simplified the choice of form. First, the Air signals all

began with the impact of the striker on the target, and ended when the resulting ring decayed away.

This suggested the use of a fitting function with an exponentially decaying envelope. Second, Fast

Fourier Transforms (FFTs) of the Air signals revealed that all of them had a significant portion of

their energy concentrated in one to three relatively sharp peaks. This suggested that a fair

approximation to the signal might result from a sum of a few damped sinusoids.

In addition to these purely pragmatic motivations, this choice of form for the fitting function had an

appealing physical interpretation. The target, like all physical objects, had a natural set of modes of

vibration, each of which had its own decay characteristics. Depending on characteristics of the

striker's impact with the target, these modes of vibration were excited to a greater or lesser extent,

then decayed in time. Although the number of modes was infinite, the number of modes to be

excited significantly by the striker may have been small. The process of finding the best fit could

therefore be thought of as a means of determining and characterizing the most significant modes of

* vibration excited in each signal.

The exact mathematical form of the fitting function chosen was a sum of n damped sinusoids, each

of which was characterized by four real-valued parameters: an amplitude Aj, decay coefficient Bj,

frequency vj, and phase Oj (1 <j < n). Fits were tried using between two and six damped sinusoid
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terms (2 < n < 6), with mixed results. The best approximation yielded by two damped sinusoids

was very poor. As the number of damped sinusoids was increased, up to five, the quality of the

best approximations improved. With six terms, the quality of approximations did not improve

over that obtained with five, and the incidence of singular matrices became noticeably higher.

Moreover, wit'L six damped sinusoids, there was greater variation in the best coefficients for fits to

different instances within a given signal class. This suggested that six terms allowed the fit to
"wander" too much in parameter space, finding solutions which were not physically relevant. It

I was therefore decided that five damped sinusoids was the optimal number to use, with the possible

exception of using a still larger number than six. The fitting function which was finally used was

therefore given by the expression:

f(t) = Y_ Aj e-it cos(27rvjt +0j) forj = I to 5

This expression contains twenty independent parameters, whose values had to be simultaneously

determined by the fitting procedure.

A standard procedure, the Levenberg-Marquardt method, was used to determine values of the

parameters yielding the best fit. This procedure iteratively found values of the parameters which

minimized the fit's chi-square value. The procedure was implemented in the C programming

language, based very closely on published routines5. With the basic technique and fitting function

specified, two issues remained to be addressed. First, the path in parameter space taken by any

fitting procedure was sensitive to initial values of the parameters. To have confidence in the

meaning of the "best" values determined by the procedure, a valid means of determining the first

guess had to be developed. Second, the iterative procedure used to find a solution could, in

principle, be continued indefinitely. It was therefore necessary to establish standard criteria for

terminating the fit.

Initial guesses for the twenty fit parameters were determined from information contained in the

complex-valued FFT of each signal. As stated above, the curve fit parameters consisted of five

,sets of four quantities: amplitude, decay coefficient, frequency and phase. When exprel;sed in

complex polar coordinates, a Fourizr transform gives explicitly the amplitude and phase of spectral

components, as a function of frequency. The amplitudes, frequencies and phases in the curve fit

parameicrs could be computed from the amplitudes, frequencies and phases of selected

componcnts present in the Fourier transform of the signal. Extracting guesses for decay
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coefficients from a Fourier transform was less straightforward. Fortunately, it proveJ adequate to

set the decay coefficients to a qualitatively reasonable, but arbitrary value.

It remained then to find a means of selecting which Fourier components to use for the guesses.

The basic approach was to choose five components which adequately represented the largest

features present in the FFT. Many variations on this theme were tried, with their successes being

rated by how closely the final fitted function approximated the signals. The most successful

method selected the components from the FF'T in the following way. The 16384 independent

components of the FF1 (the DC offset was not included) were divided into 16 contiguous blocks

of 1024 frequency bins each. Within each block, the frequency component with the largest

amplitude was selected. The 16 components so chosen were then placed in order of descending

amplitude. The first (largest amplitude) component was used to compute the first damped

sinusoid's initial values. Each subsequent, progressively smaller, component was examined in

turn, and used to generate initial guesses provided that its frequency bin was not within 512 bins of

the frequency bins of any of the other components already used for initial guesses. This provided

a computationally efficient way of choosing 5 components which equally represented the most

significant features throughout the entire spectrum.

From the 5 FFT components selected, the initial guesses were then computed as follows. The

curve fit amplitudes, Aj, (1 _ j < 5), first were set equal to the amplitudes of the chosen FFT

components, then all divided by the largest amplitude among them. Thus, the largest component

was given an amplitude of 1.00, and the other amplitudes were scaled proportionally to maintain

the same relationship between them. The choice to make the largest amplitude 1.00 was so the

largest sinusoidal term had the same maximum value as the normalized signal itself. The decay

coefficients, Bj, were all set to the same initial value, 16.0 s-1. That is, each mode was initially set

to decay to lie times its initial value in 0.0625 seconds which was within the first 1000 signal

points. This value was empirically found to give stable and consistent results. The phases, ýj,

were set equal to the phases of the chosen FF1 components, and the frequencies, vj, were set

equal to the lowest frequency covered by the chosen frequency bin. Frora initial guesses produced

in this way, the best fit parameters obtained approximated the signals to a high degree of accuracy.

Convergence criteria are a set of mathematical conditions which are evaluated after each iteration to

determine whether to continue the iterative process, or stop and take the late-st values of the

parameters as the final result. Normally, the fit is considered good enough to stop the filting:
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process when the chi-square parameter reaches a sufficiently low value, usually of order 1.0 per

degree of freedom. However, this condition is valid only if the error in each data value (in this3 case, the value at each point in the signal) is accurately known. In the case of the Air signals.

estimates for the errors were unknown, requiring that another means of quantifying the goodness

of fit be used.

For every given signal and set of parameters, the goodness of fit was evaluated as follows. First

the parameters were used to generate the fitting function, point by point, producing the

approximation to the signal yielded by the fit. The residual signal was then computed by

subtracting this approximation from the actual signal. The residual signal showed, point by point,

the deviation of the curve fit resulting from the actual signal it modeled. By taking the ratio of the

amount of energy contained in the residual signal to the amount of energy contained in the actual

signal, a quantitative measure was obtained of how much signal energy was not well modeled by

the fitting function. This ratio was named the lost fraction, and formed the basis for comparing the

quality of different fits.

3 For some of the signals, it was found that the lost fraction (which was closely related to the chi-

square) continued to drop, indicating that better choices for the parameters continued to be found,

even after as many as 120 iterations. The drops in the lost fraction typically became very small

after approximately 40 iterations, however. Since the iterative process was very slow, due to the

long signal sizes, it was desirable to set an absolute limit on the number of iterations. An upper

limit of 80 iterations was ultimately set; this was computationally reasonable, but sufficiently high
to instill confidence that the parameters developed by the fit were meaningful.

The Levenberg-Marquardt method decreased (increased) the size of the "step" in parameter space,

depending on whether the chi-square decreased (remained the same) in the previous iteration.

Because of this fact, it was useful to stop a fit prior to 80 iterations in the case of steps becoming

either too large or too small. If the step size increased past a certain point, the changes in the

parameters became too large, allowing the fit to explore parameters too far from the initial guesses

to be physically relevant. To prevent this, the fit was halted if 10 iterations were completed
without a drop in the chi-square. On the other hand, if the step size became too small, the quality

of the results did not become suspect, but the parameters ceased to change by significant amounts,

thus wasting computation time. Thus, when the step size dropped too low, the fit was stopped if
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the lost fraction were less than a convergence threshold of 4%; otherwise it was reset to a moderate

value, and the fit was continued.

n After the fit for each signal was completed, the lost fraction typically reached a level of about 9%,

with a maximum value of about 29% (instance 9 of S 1W), and a minimum of about 1.7% (instance

9 of B 1 P). Figure 9.2-1 shows a typical result, which was specifically obtained from instance I

of signal class B IP. The lost fraction for this example was 9.29%. The original signal is shown

in Figure 9.2-1(a), while Figure 9.2-1(b) displays the approximation computed from the best set of

curve fit parameters. The third graph, shown in Figure 9.2-1(c), is a plot of the residual signal.

All three graphs are drawn to the same scale. It is clear that the approximation was very good, and

that the largest discrepancies occurred at the beginning of the signal. This was to be expected

because a sharp impact contained energy distributed over a wide range of high frequencies, and

hence was not as well approximated by 5 terms as the later portion of the signal in which the high

frequency transients had mostly decayed away.

A few comments are in order regarding the interpretation of the curve fit parameters. The curve fit

function was a sum of 5 terms which were identical in form, each being determined by 4

independent parameters. Because of this, there was no obvious means of directly comparing two

terms from two different signals. For example, suppose (as was the case) that B IP signals were

observed to have slowly decaying components at 5106 and 3100 Hz. These two frequencies may
have corresponded to the first and third damped sinusoids fitted to instance 9, and the second and

fourth fitted to instance 14. In other words, the actual value of the function determined by the

parameters (Aj, bj, vj, and 1j, I _<j < 5) was not changed by exchanging two different values of

the index j. The question then was in what order should the fit parameters be placed to permit

U comparisons between them.

Several different orderings of the terms were tried, in particular arranging them in order of

descending amplitude, ascending frequency and ascending decay coefficient. The latter proved to

be the most useful. It turned out that commonalities among different instances of the same signal
class were readily apparent when the terms were arranged in this way. A plausible explanation of

this fact can be made by considering the physics of the signal production. The largest cause of3 variability in the production of Air signals of the same class was unavoidable variation in the

impact of the striker with the target. This had the largest effect on the initial shape of the signal,

and hence on the transient (quickly decaying) components. After the initial impact, signals from a
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particular class were likcly to have similar ring characteristics. It was therefore understandable that
the terms with the smallest decay coefficient (longest ring) were similar, while terms with larger
decay coefficients were more prone to variation.

In summary, time domain signals from the Air signal set were well approximated by a sum of five
damped sinusoids whose parameters were obtained from standard chi-square minimization
techniques. A method for determining the starting point for fits, and criteria for judging the fits
were developed. The end result for each signal was a set of parameters which approximated the

shape of the signal very well, even on a point by point basis. The strongest commonalities
between the parameters for different signals of the same class were found in the most persistent
(slowest decaying) modes present. When the terms were arranged from slowest to fastest
decaying, meaningful correlations to hidden nodes, human subject behavior and signal statistics

were observed, and will be described in more detail in Section 10.

1 9.3 CORRELATIONS

For all of the relevant measures for a particular signal class, the correlations between those
measures and the values of the signals on the human scaling dimensions were computed. The
signal parameters were computed on one instance of each class of each signal condition (free-field,
bottom, and air). In the cases of Free-field and Bottom signals the values resulting from
computing the parameters on different instances of the signals differed by vanishingly small

amounts. The differences between the parameters computed on different instances of Air signals
was somewhat higher, in keeping with the greater variability within a class of Air signals, but was

I still small relative to the variability across classes.

The correlations are used in the following section to identify strategies corresponding to the human

dimensions. Parameters which are highly correlated with a human dimension may be related to the
underlying signal feature or strategy of that dimension.

I
I
I
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10.0 DIMENSION INTERPRETATIONS

The dimensions which resulted from the scaling algorithm run on the subject confusion data have

been discussed above. Several methods of characterizing the original signals have also been

introduced and applied to the signals. It remains to relate these methods and their results to the

dimensions to create models of those dimensions. These models then suggest which signal

features the subjects were using along each dimension.

10.1 ANALYSIS METHODSI
Each analysis tool fit into the framework described below. The analysis of hidden nodes, which is

less familiar to most readers, is described in greater detail.

10. 1. 1 Overview of Methodology

At this point we had developed several tools for the interpretation of the signal dimensions and the

comparison to networks. We had the dimensions themselves and the associated subject weights,
which were discussed previously. The subject weights provide information about the extent to

which each subject used the various dimensions in the scaling solution. The signal statistics

described in Section 9 were examined for correlations to the various dimensions. A high

correlation was assumed to indicate that the subject was listening for a feature related to that

statistic. For the Air signals only, the statistics included the curve-fit parameters. In addition to
their use in correlations, the statistics were used to build regression models of the dimensions.

This showed which statistical signal features were most useful in predicting the placement of

signals on a dimension, another clue to the subjects' strategies. An additional important clue came

from listening to the signals. While the features noticed during aural examination can only be

described here, they were quite useful in guiding the investigation of the dimensions.I
Finally the network nodes were examined. Many of the individual hidden nodes which make up
the networks described earlier were highly correlated with signal dimensions. That is, the

activation levels produced at the output of a node by signals of each class were highly correlated
with the placement of those signals on a dimension. When a node was found to be highly

correlated with a dimension, the node was examined in detail to determine its method of producing
particular activation levels for the various signals. In some cases the node's strategy closely
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matched the strategy derived via other analyses (such as the statistical models) of the dimension.

In other cases the node's method suggested other means of reaching the same distribution of

-- signals.

-- Certain hidden nodes, particularly those correlated with the first dimensions of the Air signals

scaling solutions, are treated in greater detail than other nodes. The difference in depth illustrates

the level of analysis possible without burdening the reader with the text associated with these

analyses for all of the several hidden nodes.

The correlations between the scaling dimensions and these various tools and measures are shown

in each case by a figure. The figures are an aid to understanding the relationships between the

dimensions and the correlated signal statistics and hidden nodes. Using

Ho: p= 0

HI: p 0I
N = 12, o =0.01, Zoo 5  2.575

z = ((n-3)1/ 2 / 2) * ln((l+r)(1-p) / (1-r)(l+p))

I or r = 0.6954

I
suggests that a 0.70 absolute correlation is significant at the 1% level. Therefore, the dimensions

figures show absolute correlations of 0.70 or higher, except when a correlation close to 0.70 is

included for parallelism to another dimension.

10.1.2 Analysis of Specific Hidden Nodes

I The analysis of the functional roles of a given hidden node will be completed in three stages. The

starting point will be an examination of the weights connecting the hidden layer to the output layer.

By comparing the weight given the hidden node in question to the weights placed on other hidden
nodes, it is possible to determine the purpose for which that hidden node is used. With this3 information in mind, the weights between the input layer and that hidden node will then be
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explored to determine what information in the signal the hidden node uses to perform its function.

The picture is completed by evaluating the response of the node to actual signal inputs. Once a
hidden node is analyzed, it may be compared to others to gain insight into the behavior of the

networks as a whole.

U Before addressing the physiology of specific hidden nodes, a general discussion of the output layer

will be helpful. To facilitate the discussion, terms appropriate to Air networks will be used as

necessary (e.g. Plastic Striker). Unless otherwise specified, however, the comments are general
and may be applied to Free-field and Bottom networks with suitable substitutions for terms specific

to the Air signals (e.g. Angle for Striker).

The output layer divided naturally into three groups: the Material nodes (B and S), the Thickness

nodes (Ten and Five) and the Striker nodes (M, P, and W). Within the Material and Thickness

nodes, the binary nature of the classification performed resulted in some simplification. Because

the target output of output node B was always 0.0 whenever S was 1.0 and vice versa, the output

nodes B and S consistently developed (nearly perfectly) equal and opposite connections to the

hidden layer. The same is true of the Thickness output nodes (for examples, see Figures 10.3.1-1

and 10.3.1-2).I
Although the classification of Striker involves placing the signal in one of three categories, similar

relationships sometimes evolved between two of the three Striker output nodes. When present,

this "pseudo-binary" structure may imply that the network learned to recognize only two of the

three Striker types, with the third being recognized by default. These relationships were never as

perfectly equal and opposite as those which occurred in the inherently binary classifications of
Material and Thickness. For example, in Figure 10.3.1-2, the weights found by this network's

Metal output node, M, are of opposite sign, but much larger in magnitude than those of the Wood
output node, W. A relationship nevertheless exists; for each of these output nodes, the relative

importance of each hidden node is approximately the same. The same hidden node activations

which activate one node will tend to suppress the other.I
10.2 DIMENSIONS OF THE BOTTOM SIGNALS

H The relationships among the first two scaling dimensions of each Bottom scaling solution and the

related signal statistics and hidden node activations are shown in Figure 10.2-1.
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The scaling solutions for the two Bottom cases ("Best" and "N6") are extremely similar in the first

two dimensions. The first two pairs of dimensions are correlated at 0.97 and 0.99, respectively.

It appears that subject N6 applied the same strategy as did the three subjects as a group. This

makes sense in light of the difficulty the subjects had with the Bottom signals, and the apparent

high importance of the large reflection from the 90* objects in comparison to any other feature in

that or other orientations. The subjects had relatively little information to work with, and the

information present was almost completely defined by the 900 reflection. However, subject N6, as

well as one other subject who is included in the Best solution, could make discriminations among

* the three orientations beyond just identifying the 900 signals. That is, they could also classify 00

and 450 signals, as shown by Angle test scores of 94% and 96%. This capability is reflected in the

second dimension. Since this capability is rare among the subjects, defining it was of increased

importance.

U Weirdness values for both Bottom scaling solutions indicate that dimension one was much more

important to the subjects than any other. This data also fits the theory that the 900 reflection

dominated any other features. These subjects were selected for their high scores, which are due

primarily to high performance on the angle parameter. The selection of these subjects probably led

to the importance of the second Bottom dimension in each solution. In each case the second

dimension has a weirdness score of approximately one-half the first dimension. This indicates that
the second dimension is of significant importance; when the weirdness information is combined

with the breakdown of signals by Angle, the second dimension attracts particular interest. The

third dimension, however, is of such little importance in the subject's classification that it is not

modeled here.

I 10.2.1 First Dimensions for Best and N6 Scaling Solutions

As seen in Figures 7.4.2-1 and 7.4.2-2, the first dimensions of each scaling solution are very

similar and serve to discriminate the 900 signals from the other two orientations. The 45 and 00

signals are placed very close to one another, while the group of 90' signals is some distance away.

Only in the Best first dimension do we see a slight variation, in which S59 is slightly lower than

the cluster of other 900 signals.

I
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* 10.2.1.1 Dimensions Analysis

Listening to the signals in the order found on this dimension strongly suggests that the subjects are

making the postulated distinction between 900 signals and the other two angles. Due to their

orientation broadside to the insonifying wave, the 900 signals contain a reflection from the target

which is relatively large compared to the bottom reflection. The reflection is clearly audible in the

900 signals, and absent in the others. As a signal feature this reflection dominates any others that

the casual listener is likely to find, leading to the heavy reliance on the first dimension shown in the

scaling results.

Although the casual listener is impressed with the 900 reflection in the time domain, both first

dimensions are correlated with three statistics in the frequency domain: standard deviation,

skewness, and kurtosis. These are all descriptions of the shape of the distribution of frequencies

in the signals. For instance, 900 signals have a smaller standard deviation according to that

correlation, indicating a narrower band of frequencies, than 45' and 0 ' signals. They also seem to

be more skewed than 450 or 0' signals. The important point is that the easily recognized time

domain feature is reflected in the frequency domain as well. The regressions described below use.

these frequency domain statistics as well. The preservation of this feature in some form across the

transform from time to frequency domains also helps explain how the neural networks can find

information from the frequency domain input to classify the Bottom signals. Such information is

actually present to be used in classification, in addition to artifactual information which networks

may learn to employ.

As a time domain measure the root mean squared (RMS) level of the first and ninth instances of

each class was computed, and the two were averaged for a representative measure of the class.

The average RMS level is highly inegatively correlated with the Best first dimension and with the

first dimension of N6. This is likely to be due to the preprocessing of the signals. The maximum

level of all signals was equalized. This makes the bulk of the 900 signals lower in amplitude than

equivalent portions of the 450 and 0' signals. This difference is reflected in lower RMS values of

the 90' signals. Note that, because the 900 reflection is so large, it would stand out in any RMS

measurement. Had the signals been equalized to the bottom reflection, the 90' signals would have

had higher RMS values than 450 and 00 signals.

1
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I One may adequately predict the values of the signals on the first of the Best solution by a

regression equation using only the average RMS:I
R2(adj) = 77.9%

I p < 0.0000

When frequency domain measures are used in the regression, a slightly better set of predictors is
found:

I R2(adj) = 83.0%

Kurtosis p < 0.0000
Low Frequency Slope p = 0.0263

Regression models for the N6 solution are very similar. Average RMS by itself produces:

R2(adj) = 83.9%

p < 0.0000

I While the same set of frequency domain predictors give:

I R2(adj) = 80.1%

Kurtosis p = 0.0001

Low Frequency Slope p = 0.0143

While both time and frequency domain parameters make good regression predictors for both first

dimensions, they do not combine to make a better predictor. This indicates that the information in
them is redundant as regards the first dimension. This makes sense if the time domain event of

interest, the 90' reflection, produced the frequency domain differences demonstrated by the
regressions and correlations.

10.2.1.2 Analysis of Bot4H( I )T-H3 and Bot4H(1)TN-H4

The hidden nodes from Bot4H(l)T and Bot4H(1)TN will be referred to here as T-H3 and TN-H4.
I T-H3 was almost perfectly correlated with both dimensions, while TN-H4 was correlated at 0.72
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and 0.69 with the Best first and N6 first dimensions respectively. The output layer of BoA4H(I)T,
shown in Figure 10.2.1.2-1, indicates that the only role of T-H3 was to detect 90' signals (and it is
the only means of doing so). This was well in keeping with the division of the signals on both
dimensions. High activation from the node is used to activate the 90' output node as well as to
suppress the other angle output nodes. TN-H4, in contrast, has roles in the Material and

Thickness outputs as well as Angle (see Figure 10.2.1.2-2). Within Angle TN-H4 serves to detect
900 signals and is the only means of doing so. It suppressed 450 output but not the 0' output, a

I significant difference from T-H3.

The input weights of T-H3 are shown in Figure 10.2.1.2-3. There are two groups of weights: I1
to 115, generally positive and including the large weights on 113, 114, and 115; and 116 to 143,
almost all negative and significant. 90' signals all have their dominant energy in 113 - I15. An
example is shown in Figure 10.2.1.2-4(a). 90' signals are detected by the large weights on these

bins. Energy drops off rapidly in all 900 signals after these bins, so the large negative weights at

higher frequency bins have little effect on 900 signals. 45' and 00 signals have most of their energy

after 115, and are rejected by the large negative weights in the range 116 - 143, as sho,'n in Figure
10.2.1.2-4(b). Figure 10.2.1.2-5 shows the final activations of all classes, with only the 90'
signals activating the node.

The input weights of TN-H4, shown in Figure 10.2.1.2-6, aiT'" more complex than tho,• of T-H3.
This is unusual 1 that weights from networks trained with noisy inputs are generally simpler than
weights from networks not trained with noisy inputs. The output layer of the parent network on
TN-H4, described above, indicates that this node is being used for more functions than simply

telling 90' signals from other angles, which accounts for a more complex weight structure. The

output activations of TN-H4, seen in Figure 10.2.1.2-7, show that both 5% 00 signals receive high
activation along with the 900 signals. these two signals are identified by the node by their high
energy in bin 29. This is in keeping with the role of TN-H4 with respect to the Thickness output,
where contributes to activating 5% and suppressing 10%. TN-H4 does not suppress the 00 output
node, in keeping with the high activations for the 00 5% signals. In order to implement this more
complex strategy, TN-H4 needed a more complex weight structure than T-H3.
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10.2.1.3 Analysis of Bot4H(1)F-H I and Bot4H(I)FN-H I

These nodes are referred to as F-HI and FN-H1. Just as several frequency domain signal

measures were correlated with the dimension, neural network nodes are able to extract information

in the frequency domain to produce activations correlated with the dimensions. F-H I is very

highly correlated with both dimensions at 0.97, while FN-H 1 is correlated with the Best first

dimension at 0.83 and the N6 first dimension at 0.75.

Weights on the output layer of Bot4H(1)F, seen in Figure 10.2.1.3-1, indicate that the sole

purpose of F-HI is to detect 90' signals. It is used to activate the 900 output node, suppress both
450 and 00 output nodes, and is not used by Material or Thickness nodes. Bot4H(1)FN shows a

more complicated role for FN-H1 in Figure 10.2.1.3-2. It is used to detect 900 signals, and to

reject 0' signals, but contributes to the activation of 450 signals as well. It is also used to detect

Steel and 10% signals.

The activations of F-HI are shown in Figure 10.2.1.3-3 and confirm the node's role as detector of

90' signals. The input weights of F-Hi, seen in Figure 10.2.1.3-4, are not particularly

informative in isolation. Clearly bin 11 may play a strong role in detecting 900 signals, and this bin

corresponds to the 400 kHz insonifying frequency. Bin 16 is likely to play a role in rejecting 0'

and 450 signals.

When the 900 signals are applied to the node the cumulative activations, an example of which is

shown in Figure 10.2.1.3-5, demonstrate the importance of the large weight on bin 11. Although

one of the 90' signals peaks in bin 10 and one in bin 12, the product at bin 11 is always the largest

contributor to activation. 450 and 00 signals are rejected by bins 8-10, 12, and 16, as seen in

Figure 10.2.1.3-6. The lack of energy at bin 11 was important to rejecting 450 and 00 signals, and

illustrated the relationship between this node's processing and the high correlation between the

dimensions and the skewness measure. 450 and 0' signals tend to have relatively little energy at bin

11, instead spreading their energy to adjacent frequencies, resulting in higher standard deviations

* of the frequencies in the signal.

FN-H1 applied a different strategy towards a similar end, as seen in the activations shown in
Figure 10.2.1.3-7. The 10% 450 signals received high activation along with the 90 ' signals. As

we learned above the 450 output weight is moderately activated by FN-H 1. The strategy of flte
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node as embedded in the input weights shown in Figure 10.2.1.3-8 is quite simple and quite

different than that of F-HI. FN-HI is sensitive to energy in bins 8 and 9, activating signals with

little energy over those frequencies. The results of this strategy depart from the processing of the

dimensions in question in producing high activation for the two 450 signals.

1 10.2.1.4 Discussion of Dimensions and Nodes

I T-H3 developed exactly the strategy theorized above for the subjects on these dimensions, that is,

reacting to the large return from the 900 signals embedded in the bottom reflection. The subjects

found this feature easy to identify, and so did the networks. When the time domain network

trained with noise developed a different strategy, the strategy still depended largely on identifyingC

this feature.

In the frequency domain we found network nodes which applied strategies in keeping with at lea-st
one of the correlated signal measures, standard deviation. The time domain feature of the 900

signals was reflected in certain frequency domain characteristics, such as the width of the

frequency distribution, and the networks were able to extract that information from the signal

inputs.

10.2.2 Second Dimensions for Best and N6 Scaling Solutions

These dimensions serve to separate the signals into three groups according to Angle. Thlis is a

significant result given the difficulty that subjects had with the angle parameter.

10.2.2.1 Dimensions Analysis

The second dimensions of Best and N6 are almost perfectly correlated (0.99) with one another. A

most interesting point about the second dimensions is that the 450 and 0' signals are widely

separated. This indicates that, at some level less important than the first dimension, there was a3 tendency to confuse the signals with other signals of the same angle. Furthermore, the 0' and 450

signals are the most widely separated groups on the second dimensions. To the casual lis'cner this

is a surprising result, as the 0' and 45' signals are almost identical. Two subjects, of course, were

able to distinguish between them. That performance told us that some features of the signals

I
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I differed. The casual listener might suspect artifact, as no common feature is apparent and only two
of ten Navy subjects, and no student subjects, had such high performance.I
The breakdown of signals on the second dimension discounts the artifact theory, since the 0'
signals group together separately from the 450 signals. The subjects in these scaling runs tended to
confuse the 0' subjects with one another, and the 450 subjects with one another, with enough
regularity to force the scaling algorithm to place the signals in these groups on the second

dimension. Had each signal had some unique artifact, subjects would have confused it with the
other Angle class (900 excepted) as often as with its own. Furthermore, such artifact could have
been used to identify the signal on other parameters, but those performances remained low.

Listening to the second dimensions was revealing. The discrimination between 00 and 450 signals
was quite difficult, as shown by the performances on the experiment. The first-time listener is
unable to discern any difference. Armed with the knowledge that two subjects had been able to do

the task, two authors sought a feature by which the task could be accomplished. The first author
listened to the 0' and 450 signals at 32 kHz, twice the rate at which the signals were played in the

experiment. After very considerable time listening to the signals, the author developed a theory
about a feature by which the two groups were distinguished. The theory stated that the 450 signals

contained an event, similar to the reflection of the 90' signals, but of vanishingly small amplitude.
In an informal test the author was able to identify 75% of a test set consisting only of 0 and 450
signals correctly, and the 25% incorrect classifications were on the same two signal in every case.

Upon attempting to apply this theory at 16 kHz, however, the author found that the signal feature
was not present. When played at 16 kHz and at the same loudness the signals did not have the

same feature. The shift in frequency had uncovered, or made apparent, a signal feature not evident

in the signals at the lower frequency. A second author attempted to find the feature and failed.
However, that author increased the loudness of the signals (by adjusting the volume of the1 receiver) and discovered another, probably related, feature. According to this theory, the 450
signals contained two pulses similar to the 900 pulse but of far smaller amplitude, while the 00
signals contained only one. Armed with this description of the features, the first author took the
formal test session of the experiment and scored 91 correct Angle classifications out of 96. Such a

score indicated that the feature was indeed present in the 0 and 450 signals, and was simple enough

to explain. The feature was dependent on loudness level, appearing only when loudness was
rather high.
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Just as no signal statistic was correlated with either second dimension, no statistic was significant

as a predictor in a regression equation. This is not surprising given the subtlety of the signal

feature which distinguishes 0' signals from 450 signals. None of the signal statistics would be

expected to react to this feature.

10.2.2.2 Hidden Nodes

While some hidden nodes were correlated with these dimensions, the extremely subtle feature3 which only two Navy subjects found was presumed lost with the information eliminated from the

signals in preparation for network input.

10.2.3 Summary

In the Bottom data were found perhaps the closest relationships between human and network

processing. On the first dimensions human and networks applied the same strategy to detecting

90' signals, namely, by searching for the large transient characteristic of the broadside orientation.

Frequency domain hidden nodes were sensitive to a related feature, demonstrating the network's3 ability to find signal features to which humans are less sensitive.

While we saw that Navy subjects often performed better than subjects without sonar background,

the placement of signals on the secop J dimension by the subjects who were able to tell 0' from 450

signals is perhaps more impressive. This feature eluded all other subjects as well as the neural

networks, and demonstrated a limitation of networks in learning very subtle patterns. Different

signal representations might have been an aid to networks in this respect.

10.3 DIMENSIONS OF THE AIR SIGNALS

The two scaling solutions, for three subjects (called Best) and for subject N4 alone, show

I considerable similarity. The placement of signals on these dimensions was shown in Figures

7.4.3-1 and 7.4.3-2. The relative placement of the signals on the dimensions is quite significant to

the analysis of the dimensions. Both first dimensions separate the signals by Thickness. In fact,

the first dimension of N4 does so perfectly. The third dimension of N4 divides the signals3 perfectly by Material, while the third dimension of Best does so with one error. There at-e,
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however, no very good breakdowns of the signals by Striker on any dimension. Every test subject
scored higher on the parameters of Thickness and Material than on Striker, and the scaling

dimensions reflect this performance. One of these dimensions did produce a partial breakdown by
Striker. This was the second dimension of N4, who was the subject with the best performance on

Striker. On this dimension the four metal striker signals are lowest, while plastic and wood striker

signals are distributed above the metal striker signals. The relationships among the dimensions,
the acoustic signal measures, and the network nodes are shown in Figures 10.3-1 and 10.3-2.

All three dimensions in each scaling solution are weighted significantly by the subjects, indicating

that the strategy behind each dimension is of some importance. There are some important
correlations between dimensions across the two scaling solutions. The first dimension of the Best

solution is highly correlated with the first dimension of the N4 solution, indicating that subject N4

used a primary strategy similar to that of the three Best subjects as a whole. The second dimension

of the Best solution is highly correlated with the third dimension of the N4 solution. The

remaining two dimensions are independent, indicating some difference between the overall
strategies used by N4 and the three Best subjects.

10.3.1 Introduction to Air Time Domain Network NodesU
A large number of hidden nodes in the Air time domain networks had interesting correlations with

human subject dimensions, signal statistics, and curve fitting parameters. Of particular interest
were the networks Air4H(2)T and Air4H(2)TN. The general analysis of these two networks is

introduced here in preparation for later sections in which specific hidden nodes are addressed.

These networks have identical architectures, and were trained from the same initial conditions.

Their training differed only in that the latter was trained with, the former without, noise added to

the signal set. This resilted in the evolution of very different weights in the two networks.

Despite the differences, it was frequently the case that a pair of hidden nodes, one from each

network, would correlate strongly with the same parameters and with each other. The hidden

nodes of interest were thus analyzed in pairs, in order to gain insight into the role played by noise
in training.

The output weights of these two networks are shown in Figures 10.3.1-1 and 10.3.1-2. In both, a
pseudo-binary relationship developed between the M and W output nodes. When a pseudo-binary
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relationship exists between two of the Striker outputs, the third may not actually perform a

meaningful calculation. For example, in Air4H(2)TN (see Figure 10.3.1-2(c)), the hidden node

weights of output node P are so small that its activation hovers near 0.5, regardless of the type of

signal applied. If the other Striker nodes, M and W, are both suppressed, the network may

(correctly or not) place a signal in the Plastic Striker category, but this does not change the fact that

the network did not learn actually to identify Plastic Strikers.

I On the other hand, in Air4H(2)T (see Figure 10.3.1-1 (c)), it is likely that the output node P did

learn to identify Plastic Strikers. The weights are distinct from those of the other two Striker

nodes, and of respectable magnitude. Despite the pseudo-binary relationship of the other two

nodes, the third node here performs a useful function.

During the analysis, the following characterization of the Air time domain signals will be useful.

The envelope of each Air signal was observed to conform to one of three qualitatively different

shapes. The first, a "short envelope" is one which decays monotonically from its maximum value

to very small values within the first twelve inputs. Short enveloped signal types are B I M, B IP,

B 1W, S5M, and S5P. A "long envelope" signal rings out, having energy at least as far out as

input twenty-five. Usually, these signals do not decay according to a single exponential; rather

their envelopes may have bumps and plateaus. This group consists of B5M, B5P, B5W, and SIM

signals. The third group is characterized by an initial, rapid decay to small values, followed by one

or more "returns" of signal energy. The members of this class are SIP, S1W, and S5W, and they

are called "boomerang" signals. These categories are introduced only for descriptive purposes, not

as a definitive or rigorous categorization scheme.

One minor technicality concerning the Air signal sets should also be commented upon at this point.U In the time domain the Air signals all begin with the sharp impact of the Striker, and hence start at

their maximum value and decay from there. Since each network input in the time domain was

normalized to its maximum value, the first time input in every signal has a value of 1.0, regardless

of its signal class. In networks trained with noise, the first input will in general be changed by the

noise, but in clean-trained networks, the first input is fixed at 1.0, and hence behaves exactly like a

second bias inpuL When analyzing clean networks, then, any connection weight from input node

11 can for the purposes of analysis be added to the bias weight. The term "effective bias" will be

used below to refer to the combined value of the weights on the bias and first input 11.
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10.3.2 Best First and N4 First Dimensions

These dimensions were analyzed using a combination of correlated signal measures, regressions,

listening to the signals in the order found on the dimensions, and finally network hidden nodes.

The first dimensions are considered somewhat, but not overwhelmingly, more important in their

respective scaling solutions than the remaining dimensions (based on subject weighting reported in

Section 7). Both dimensions separate the signals by Thickness as shown in Figures 7.4.3-1 and

7.4.3-2. The Best first dimension does so with two errors near the center of the dimension. The

N4 first dimension separates the 10% signals perfectly from the 5%, although two 10% signals are

placed very close to the 5% group rather than with the remaining four 10% signals. The three

Brass 10% signals and S1W are together low on the dimension, while SIP and SIM are very close

to the group of 5% signals high on the dimension. The Best first dimension differs in that SI P is

part of the 10% group low on the dimension, and S5W is in the middle of the dimension rather

than high. The Brass 10% signals are low on both first dimensions, suggesting that these signals

share some feature to which all three subjects were sensitive and which differentiates them from the

bulk of the rest of the signals.

10.3.2.1 Dimensions AnalysisU
The two first human scaling dimensions are highly correlated with several statistical measures, as

seen in Figure 10.3-1. Statistics taken in both the time and frequency domains correlate with these

dimensions. Among the curve fit parameters, both the decay coefficient and the frequency of the

most persistent sine wave (i.e. for each signal, the sine wave which damps at the slovwest rate) are
highly negatively correlated with the dimensions. This indicates that as the value of the signal on

the dimension increases, the most persistent sine wave of that signal tends to last longer than that

of other signals, and tends to be of lower frequency. The high correlation with the time domain

decay damping statistic is consistent with the correlation with the damping coefficient of the curve

fit solution. High frequency slope and standard deviation, two statistics which characterize the

shape of the frequency distribution, are also correlated with the first dimensions. The correlation

with high frequency slope indicates a sharper cutoff of high frequencies for signals higher on the

dimension. Signals high on the dimension would also appear to have a wider distribution of

frequencies than signals low on the dimension.

I
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Upon listening to the signals according to their placement on the first dimension of the N4 scaling

solution, the first impression on the listener was a time domain difference between the two groups
of signals. The large group of signals high on the dimension damp much more slowly than the
signals low on the dimension. The Brass 10% signals grouped low on the dimension are quite

distinct in damping faster than all others. S1W is an exception to this rule. S1W is unique in

having both a distinct, dull strike and a long ring. If the placement of S1W near the Brass 10%

signals was due to its distinct, dull strike, as seems feasible, then the subject was listening for

decay only from the initial frequencies of the strike. In these ways the high correlations with the
decay coefficient of the most persistent sine wave and with the "decay damping" statistic are

apparent to the listener.

Listening to this dimension is also an aid to understanding the negative correlation with the
frequency of the most persistent sine wave used in the curve fit solution. As we progress from

signals with high dimension values to signals with lower values, the frequency of the long-
duration ringing portion of the signal was heard to increase. The exception, again, is S I W, which
has a ringing frequency similar to the other Steel 10% signals which are higher on the dimension.

The effect is not linear with the frequency in Hz, but the nonlinear nature of human hearing along
with the complexities of subject strategies would not be expected to give a linear relationship. The

order effect is quite good, in that one can hear the frequency differences consistently from signal to

signal along the dimension.I
The relationship between the first Best dimension and the rates of decay of the signals is also
apparent from listening. The signals that damp the fastest are lowest on this dimension, and the

relationship is audible. The high correlations with the two damping parameters make sense to the

listener. The high correlation with standard deviation also becomes apparent with listening to this

dimension. The longer signals are dominated by their ringing portion, which contains far fewer
frequencies than the relatively broad spectrum of the impact. Subjects are using some combination
of these time and spectral characteristics, which tend to vary together on this dimension. That is,
the signals which damp the fastest have the widest frequency distributions, as measured by the

standard deviation, precisely because they damp faster than other signals.

Another audible characteristic of the first dimension of the Best solution is that the frequency of the
ringing portion of the signals tends to increase as the value on the dimension decreases. The

I
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I signals which damp very quickly are more difficult to interpret in this manner since it is hard to
identify their longest-lasting frequency, yet they contribute to the correlation quite well.I
The best single regression predictor for the first dimension of the N4 solution is the high frequency

slope of the signal:

R2(adj) = 69.1%

High Frequency Slope p = 0.0005

However, this performance is due to the wide separation of the Brass 10% signals from the other

signals, which serves to predict only to which of these groups a signal belongs. This is shown in

Figure 10.3.2.1-1.

!4

0.75

"•"0.0z 0H
-Brass,- 0.75 S1W

- 10%I4
-1.50 •I1*oI *I i

-1.20 e-6 -6.0 c-7

High Frequency Slope

I Figure 10.3.2.1-1 High Frequency Slope vs. First Dimension

1 he decay coefficient used as a predictor separated the two groups of signals in much the same

manner. A more revealing regression model was created from the frequency of the most persistent

sine wave. This predictor was not as strong statistically as high frequency slope, but had a bctter

distribution of the signals, as seen in Figure 10.3.2.1-2.

R2(adj) = 52.7%

Frequency p = 0.0045
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Here we see a relationship between the dimension and a predictor which spans the range of the
dimension. The signals are no longer simply clumped in widely-separated groups. Of course this
does not account for non-linearities in the subjects' perception of frequency or in their placement of

signals on the dimension by frequency, but offers an explanation for the placement of intermcdiate
signals on this dimension not offered by the previous regression predictors.

The three subjects who made up the Best group may have been using frequency in a more3 straightforward manner, as this parameter of the signals is a better predictor than it was for N4:

R2(adj) = 73.7%

SFrequency p = 0.0002

Again, subject perceptions of frequency are not fully acccunted for by such a simple model, and

the relationship does not appear to be linear, but this statistic is a very good predictor of placement
on the first dimension of the Best solution.
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10.3.2.2 Analysis of Air4H(2)T-H3 and Air4tt(2)TN-H2

The first set of nodes to be discussed are both from the Air signal, four hidden node, time domain
networks. The second and third hidden nodes for these networks are referred to by the names
Air4H(2)TN-H2, and Air4H(2)T-H3. This pair of hidden nodes was chosen because of very

significant correlations between each of them and the first dimensions produced in the human

performance analysis. They are also correlated with each other, yet they have very different weight

structures and so respond similarly to the signals through rather different means. Since the
following discussion applies only to these two networks, to simplify the notation they may be
further abbreviated from Air4H(2)T and Air4H(2)TN to simply T and TN. Nodes within the
networks will be referred to in a similar manner, for example T-H3.I
Following the procedure outlined in Section 10. 1. 1, the analysis will bebin at the output layer.
Figures 10.3.1-1 and 10.3.1-2 show the hidden-to-output weights of the networks T and TN,

respectively. A comparison of the two reveais that the major difference in the output layer between
the two networks occurs in the Striker weight structure. There are significant quantitative

differences in the ' laterial and Thickness weights as well, but only in the Striker weights have the
networks developed qualitatively different weight structures. Focusing on the nodes of interest,
T-H3 and TN-H2, the weights connecting these two nodes to their respective output layers follow
nearly opposite trends. For example, TN-H2 has a strong negative connection to TN-M while
T-H3 has a strong positive connection to T-M. This is not surprising since the negative

correlation between T-H3 and TN-H2 implies that they tend to sort the signals into opposite
orders. Prior to any further comparison of nodes T-H3 and TN-H2, it will be useful to continue

the analysis of each node individually.

10.3.2.2.1 TN-H2 Analysis

First, consider hidden node TN-H2 and the weights connecting it to the output layer (see Figure

10.3.1-2). The Brass output node TN-B weights TN-H2 negatively, but very weakly compared
to its weights on TN-HI and TN-H3. In fact, TN-H2 receives a weight smaller even than the bias
term. From this it may be irferred that TN--H2 is not a primary node used for determining target
material. The situation is similar for TN-Ten; it placcs a positive weight on TN-It2 which is small
compared to all the other hidden node weights and the bias term. Thus, it would seem that the
Thickness outputs are al-so largely unresponsive to TN-t 12.
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Turning now to the Striker output nodes, it is evident that TN-H2 piays a key role in the

determination of the striker. The weights developed by TN-M and TN-W display the

pseudo-binary tendencies described in the introduction to this section. The same hidden node

values which produce activations in TN-M will tend to suppress TN-W, due to the opposite and

roughly proportional weights these nodes place on the hidden layer. For all three Striker output

nodes, the weight placed on TN-H2 is large'r in magnitude than the weights from any of the other3 hidden nodes. In particular, TN-M and TN-W place upon it an extremely high weight, negative

and positive respectively. Looking at the other weights between the Striker outputs and the hidden

layer suggests that TN-Hi also plays a role in determining the Striker. A precise understanding of

how the Striker is determined would involve at least these two nodes. For the present discussion

of TN-H2, however, it suffices merely to know that it is heavily used by the network as a Wood

detector and a Metal rejector, and is not used much by other output nodes.

I The weights connecting TN-H2 to the input layer are shown in Figure 10.3.2.2.1-1. There are

two features of this weight structure which simplify its analysis. First, the only important weights

connecting TN-H2 to the input layer are concentrated between the input nodes TN-12 and TN-18.

Outside this range, not only are the weights smaller in magnitude, but the inputs by which they are3 multiplied are very small, even in long enveloped signals. Second, these weights are uniformly

negative, in contrast to the bias, which is approximately equal in magnitude to the largest input

weight (TN-12), but positive. This bias term gives TN-H2 a high activation which is decreased

by signal energy in TN-12 through TN-18. Only a signal which has sufficient energy in this

region, and/or decays sufficiently slowly, can overcome the bias, and turn off TN-H2. Therefore,

based on the i-:put weight structure, it may tentatively be concluded that the hidden node TN-H2 is

a detector of fast decaying signals.

The above observations of the output and input weights suggest the following description of this

node's function. The hidden node TN-H2 provides some information about the striker, using

information found early in the signal, with not much regard for the signals' behavior after the first

few time inputs. This is rather appealing from a physical point of view; one would expect the

impact of the striker to influence most strongly the transient, i.e. quickly damping, components

associated with the production of the sound. The "after-ring" is more characteristic of the natural

resonances of the target than the striker. Thus it is consistent for TN-H2, which the network uses
for classification of the Striker, t,) focus on the early portion of the signals.
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It was hypothesized above that TN-H2 is a detector of fast decaying signals. By investigating
TN-l-12's response to actual signals in the Air test set, the validity of this hypothesis can be tested.

An output summary is shown in Figure 10.3.2.2.1-2 which displays the activation of TN-H2

resulting from the input of instance nine of each of the twelve signal classes, both before and after

applying the transfer function. Plotting the signals in this fashion shows explicitly the effect of the

transfer function on the output. It is clear from the result that TN-H2 does not sort the signals

perfectly according to Material, Thickness, or Striker. The various Brass signal classes are split,

half activating the node strongly and half suppressing it. Because of this it is not at all useful for

determining material. Brass signals are separated very well according to Thickness, but different

Strikers are clustered together, while for Steel signals the reverse is true. For Thickness, some

overall separation of the signals persists, but as remarked earlier, the Thickness output nodes

ignore TN-H2. For classifying Striker, TN-H2 fares a little better; three out of four Metal and

Plastic striker signals result in negligible activation, while three out of four Wood signals activate

this node to some degree. The signals which do not follow this pattern are B IM and B IP, which

strongly activate the node, and B5W, which strongly suppresses it. Although the node TN-H2 is

only a 75% accurate detector (rejector) of Wood (Metal) signals, TN-H2 is the hidden node most

heavily weighted by the Striker output nodes. This may explain why the percentage of correct

Striker classifications for the network TN as a whole is only 71%.U
To determine what the hidden node TN-H2 has learned about the signal set, it is useful to examine

more closely how the node output evolves under the influence of the various network inputs. This

is readily accomplished graphically, and since this graphical method will be applied extensively

throughout the hidden node analyses, some explanation of the meaning of the graphs will now be

given.

The graphs used to view the response of specific hidden nodes to specific signal classes plot two

different quantities as a function of input node. One is shown as a column plot, and is simply the

value of the signal being applied. The second, shown as a curve, is the cumulative sum of the

hidden node. The contribution to a hidden node's cumulative sum made by each input node is the

product of that input node's value and the weight connecting that input node to the hidden node.

The cumulative sum plotted for a specific input node is the sum of contributions from all the inputs

from the bias up to and including that node. The influence of a particular input can be read from

the difference in the cumulative sum between that input and the previous input. The graph thus

serves to convey how important each successive input is to the final value of the cumulative sum.
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The value of the cumulative sum computed at the last input node is the argument to the transfer

function which produces the final output of the hidden node. For example, Figure 10.3.2.2.1-3(a)3 shows the behavior of the cumulative sum of hidden node TN-H2 when instance nine of the B I P

signal class is applied. The first point of the cumulative sum plotted corresponds to the bias, and is

approximately +8, this being the product of the bias value of +1.0 (also shown in Figure

10.3.2.2.1-3(a)) and its weight (shown in Figure 10.3.2.2.1-1). Although the next input, TN-Il,

is + 1.0, the cumulative sum does not change at input TN-I1, because the weight TN-H2 places on

this input is 0.0. The drop in the cumulative sum between TN-12 and TN-16 is caused by

substantial energy present in these negatively weighted inputs. No significant change occurs after

TN-16, due to a combination of small weight values, and low (mostly zero) inputs in this region.

The largest single drop in the cumulative sum is approximately 2.5, and occurs at input TN-12,

whose value is approximately 0.3, and whose weight is about -8. The final value of the

cumulative sum is approximately +3.8, which corresponds to an output of about +0.98 after the

transfer function is evaluated. These are the values shown for this signal class (B 1 P) in the

activation summary shown in Figure 10.3.2.2.1-2.

U To return to the analysis of TN-H2, the idea that this hidden node is a detector of fast decaying

signals certainly holds true for the most extreme examples in the Air signal set. Figure

10.3.2.2.1-3 shows the cumulative sums for instance nine of the B I P and B5P signal classes,

which are representative of the shortest and longest signals, respectively. It is clear from Figure

10.3.2.2.1-3(a) that the B IP signal simply lacks enough signal energy to overcome the bias term,

and thus fails to deactivate TN-H2. By contrast, the B5P signal shown in Figure 10.3.2.2.1-3(b)

has more than enough energy to overcome the bias, and suppress the node. So it is easy to see

why for the longest signals (B5M, B5P, B5W), the output is nearly 0.0, while for the shortest

(B IP, B 1W), the output is nearly 1.0.

Consider, however, signals from the class BIM. Although they are as short as the other Brass3 10% signals, they give a noticeably lower activation of 0.87. More strikingly, the other short

enveloped signals (S5M and S5P) actually have enough extra energy to suppress TN-H2. Thus,3 while TN-H2 does seem to detect fast decaying signals, only the very shortest signals manage to

he detected. This may indicate that it is performing some additional, more subtle function as well.

Some insight into this additional operation may be gained by examining the remaining signal

classes, which all give moderate activations: S5W, S1W, SIP and S5P. It is noteworthy that this

10-43

I



Figure 3(a): BIP ________

*0.8 
1

0.4- - --- - - - -

0 0

0.4 L)i

-0.6-10
*-0.8 - - -- -- -

-1---- ------------ ----- --------------- -15
C'q It %0 00 0 C1 'or \ 00 0= <-4 14 IC 00 C0 C14

C- .- . . M M

Input Node

[]Signal Value -.- Cumulative Sum
* ~~~Figure 3(b): B5P-----------------------1 1

* 0.8

0.6

I- ~~0.2 ~~i

0: -- I. i -- ---- - - - - - - - 0
.ý -0.2E

-0.4--------- ------ - --------- -5

-0.6-------- ------- -- - ------------ --- 10
-0.8 a i t-

-1 .. - - -~- -15
110~~. 000 C) C14 \O 00 0 Nl k-~C 0 cc

Input Node

Figure 10.3.2.2.1-3 Cumulative Sum of Hidden Node Air4H-(2)TrN-l12
for Instance Nine of Classes B IP and 1351?

1 10-44



I
group includes all the boomerang signals. Of this last group, the highest activations occur for the

S I W and S5W signals, shown in Figure 10.3.2.2.1-4. The first three inputs of S IW signals

show a very strong decay (see Figure 10.3.2.2.1-4(a)). If the signal continued to drop
monotonically after TN-13, its cumulative sum would level off at a high activation level, like the

B IP signal shown in Figure 10.3.2.2.1-3(a). Instead, however, in inputs TN-14 through

TN-1 13, the first "return" of the boomerang contained enough energy to suppress the node

weakly. The return of signal energy in the S5W pattern in Figure 10.3.2.2.1-4(b) is somewhat

weaker, but still enough to give it a noticeably lower activation than the B IM signals it resembles

for the first few inputs.I
In conclusion, then, it may be said that this node is sensitive to a physical quality of the signals,

namely, the speed of their decay. It is strongly activated for very short signals, suppressed by
long ones, and signals between these extremes are placed in the middle. Long signals are

produced predominantly by Plastic and Metal strikers, hence the output layer uses TN-H2 as a

detector of Wood striker signals. The hidden node TN-H2 does not perform this function

perfectly, which is probably partly responsible for this network's mediocre success with

classifying Striker.

10.3.2.2.2 T-H3 Analysis

The performance of the cousin of this network, T, which was trained on clean signals is somewhat

better, in that it achieves a level of 84% correct for the striker parameter. The node T-H3 has a

significant negative correlation with TN-H2, which suggests that these two hidden nodes sort the

signals into roughly opposite orders. It might therefore be expected that this hidden node wot.;d be
used for similar tasks, but in an opposite manner to the hidden node TN-H2 discussed above.

I This is true to a point, but there are some major differences between the two networks in the
structure of their output weights.I
Moving now to the weights connecting T-H3 to the output layer (see Figure 10.3.1-1), the Brass

output node gives positive weight to T-H3, but it is much smaller than the bias term. Thus T-H3,

like TN-H2, does not seem to be a very important node in determining Material. There is a large,

positive weight connecting T-H3 to the Five Percent output, T-Five, which would suggest that the

hidden node is used partly as a Five Percent Thickness detector. This is in contrast to hidden node
IN -112, which was ignored by the Thickness nodes. The output nodes T-M and T-W display an
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even stronger pseudo-binary relationship than TN-M and TN-W. In determining Striker, the

positive weight connecting T-H3 to T-M is larger than all others, save the bias. There are
significant negative weights connecting T-H3 to T-P and T-W (the Plastic and Wood nodes).

Thus T-H3 is used as a Metal detector by the network. This much is similar and opposite to the

usage of TN-H2, which detected Wood signals, and strongly rejected Metal. A difference

between the two hidden nodes is that T-H3 is also used by the Plastic output node, T-P. It should

be recalled that in the network TN, the Plastic output node did not develop a meaningful algorithm.

The additional uses of T-H3 are the most significant differences between the hidden nodes TN-H2

and T-H3.I
We now continue to the connections between T-H3 and the input layer of the network T. These

weights are shown in Figure 10.3.2.2.2-1. A superficial comparison of this graph and Figure

10.3.2.2.1-1 suggests that the two nodes extract very different features from the signals. Further

comparison will be deferred for the moment, however, so that T-H3 can be discussed on its own

merits. Since this is a clean-trained network, the bias and first time input may be added (see

comments in the introduction in Section 10.3.1) to give an effective bias of approximately -8.0; the

node thus starts out deactivated. After T-I1, the weights fall naturally into three groups. The first

consists of a complex alternating weight pattern from T-12 through T-17. Next follows a simpler

group of negative weights from T-18 through T-113. The third group consists of the all positive

weights from T-114 through T-430.

The last group (T-114 through T-130) is the easiest to understand. In all but the longest signals,

the inputs to this group are all 0.0. Although these weights are substantial, the longest signals in

this region are of small amplitude, hence the contribution from this group is significant and

positive, but not overwhelming. This last group can be thought of as a moderately strong long

I signal detector.

There are not as many weights in the middle group (T-18 through T-I13) as in the last, but they are

larger in magnitude. In addition, the signal in the middle region is much larger than in the last
region. The negative contribution from this group tends to overshadow the positive contribution

from the last group, and can be considered a very strong rejector of medium or long signals.

I The first group (T-12 through T-17) is used to process the most energetic portion of the signal, and
is very important in determining the final state of the node, but it is also the most difficult to
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U
understand. Some simplification results by mentally grouping the weights in pairs: T-12 with

T-13, T-14 with T-15, and T-16 with T-17. As shown in Figure 10.3.2.2.2-1, the positive weight

on input T-12 is of significantly larger magnitude than the negative weight on T-13. Similarly,

T-14 is much more heavily weighted than T-15. The weights on T-16 and T-17 are both positive.

This disposition towards positive weights is such that each pair yielded a net positive contribution

to the cumulative sum, for all signals applied. This contribution was largest for signals with

consistent energy throughout these inputs, and smallest for signals with low energy. It is

interesting that both negative weights correspond to the positions of minima, T-13 and T-15, in

boomerang signals. This seems to be more than accidental, for it helps boomerang signals to3 achieve higher cumulative sums than short enveloped signals in this region. This first group of

weights thus seems to sort signals into long enveloped (highest cumulative sum), boomerang

(smaller cumulative sum) and short enveloped (smallest cumulative sum) signals. This group

performs a very similar function to that performed by TN-H2. In fact, the cumulative sums

obtained from the signals using only this first group of weights (ignoring inputs T-18 through

T-132) are distributed in almost exactly the opposite order as the sums using all the weights in
hidden node TN-H2.

The activations of T-H3 after applying instance nine of each of the signal classes to the input layer

Sare shown in Figure 10.3.2.2.2-2. The placement of the signals is mostly consistent with the

negative correlation between this node and TN-H2. The (mostly) subtle differences cause these

two hidden nodes to have markedly different functions in the networks. With the exception of

S1M and S5W signals, T-H3 separaites signals very well according to target thickness, as

anticipated from the fact that it is used as a 5% detector by the output layer. There is no separation

between Brass and Steel signals, however. For classifying Striker, the node seems slightly worse

than its counterpart, TN-H2. It is odd that T-P weights this node heavily, since half of the Plastic

signals activate the node strongly and half strongly suppress it. The separation between Metal and

Wood signals is cleaner than in TN-H2, but still only 75% accurate. Since Air4H(2)T classifies

I Striker with 84% accuracy, it may be inferred that one or more of its other hidden nodes

separate(s) the signals by some other criteria useful to the Striker nodes.

Negative cumulative sums (activations less than 0.5) were achieved by six of the twelve Air signal

classes, in two different ways. The shortest signals (BIM, BIP, and BIW) simply decay so

quickly that they fail to overcome the negative effective bias (see Figure 10.3.2.2.2-3(a)). This is

identical to the way these signals were given positive sums by TN-H2. hlie other signals to
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I
achieve negative cumulative sums were the boomerang signals (S1W, SIP, and S5W). These all

had enough energy in T-I2 through T-17 to overcome the negative effective bias, but were3 subsequently pulled back to negative cumulative sums by the second group of weights, and lacked

the necessary energy in the third group to make the sum positive again (see Figure

10.3.2.2.2-3(b)). The remaining signals overcame the effective bias, and achieved net positive

cumulative sums within the first weight group (T-12 through T-17), which were diminished by the

negative second weight group (18 through T-113). Some signals (S5M and S5P) lacked the

energy in this second region necessary to overcome the positive value achieved by the first weight

group (see Figure 10.3.2.2.2-4(a)). The rest (B5M, B5P, B5W, and SIM) were actually pulled

negative by the second weight set, then pulled back by the third to a final positive cumulative sum

(see Figure 10.3.2.2.2-4(b)).

m In summary, then, T-H3 uses information distributed throughout the signal to render its output for

each signal. The weights fall naturally into three groups. The first group of weights is sensitive to

the initial shape of the signal, providing the largest sum values for slowly decaying signals. The

second group is negative, and reduces the sum for medium and long signals. The third group is

positive, and counteracts somewhat the second group for long signals. The combined effect of all

the groups is to produce high activations for long enveloped signals, and low activation for

I boomerang and short enveloped signals.

I 10.3.2.2.3 Comparison and Contrast of Hidden Nodes TN-H2 and T-H3

At the outset, the negative correlation between these two nodes suggested that they perform

"opposite" functions. To some extent, this notion is reflected in the way the output layers use

these two nodes. They are given weights of opposite sign and similar magnitude by the Metal,
Wood, Brass and Steel nodes. However, while TN-H2 was ignored by Thickness nodes, T-H3

is used as a 5% detector. Both nodes use their input weights to extract information related to initial3 energy, decay, and duration of the signals. Both place emphasis on the first several inputs,
gleaning from them a measure of how much signal energy is present, and how fast it is decaying.3 The hidden node TN-H2 essentially passes judgment on this information alone. Its weights arc

delicately balanced to yield a strong activation only for the three shortest signals, moderate

activations for two of the three boomerang signals, and no or slight activation for the rest. Its

function seems to be to detect only the quickest decaying signals, and the very slowest. Other

signals are arbitrarily distributed between these extremes. The first several input weights of hidden
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I
node T-H3 perform a very similar computation to TN-H2; the shortest signals are clearly
identified. If energy is present in the second region, and not the third, the signal is identified as a
boomerang signal. The last weights identify long ringing signals by their persistent low level tails.

The differences in the two algorithms developed by these nodes are most striking in the different
ways they respond to SIP signals. Figure 10.3.2.2.3-1(a) shows the cumulative sum graph for
an SIP signal applied to TN-H2. It is clear that TN-H2 is deactivated because of the first several
large inputs. No second judgment is made by examining the total length of the signal, or its shape.
By contrast, (see Figure 10.3.2.2.3-1 (b)) the S 1P signal initially activates T-H3 (the same
judgment made by TN-H2), but this decision is reversed by the boomerang return energy. The
S 1P signal ultimately strongly suppresses T-H3, then, not because of its initial shape, but by its

boomerang return and the lack of any later signal energy.

The functioning of T-H3 is more complex and more sophisticated than TN-H2, but at the same
time less elegant and less general. The final output depends on a critical balance between almost all
of the signal inputs. It is easy to see how the presence of added noise would disrupt this balance,

particularly as the signal decays and the noise assumes greater relative value. It is particularly
evident in the longest signals (see Figure 10.3.2.2.2-4(b)) that the cumulative sum wanders up and
down a great deal before reaching its final value. This is partly a consequence of the large number

of strong weights of either sign, and suggests that the algorithm developed by this node may
render a value based on more "arbitrary" features of the particular signals included in the testing

and training .

I The simpler solution developed by TN-H2 uses much less of the signal information to determine

its final activation. This restricts the node's ability to discriminate between signals, as there are
cues in other portions of the signal which are ignored. Some of these cues are used by T-H3 to
make a finer distinction between boomerang and long enveloped signals. On the other hand,
TN-H2 classifies signals very similarly to T-H3, but performs this task much more simply and

elegantly. It is more likely that TN-H2's classifies the signals using general features of the signal
types, not arbitrary features of the signalh in the training and testing sets.

The only difference in training between the two networks Air4H(2)T and Air4H(2)TN was that the
latter was trained with noisy signals, while the former was not. The different weights that the

hidden nodes TN-H2 and T-H3 developed are very suggestive about the effects of training noise.
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The weights determined by TN-H2 use only the early portion of the signal, where the signal-to-

noise ratio is largest. The addition of noise on training seems to have suppressed the use of

weights in regions of the signal where the noise is more dominant. It is easy to see how this

solution is more robust than that found by T-H3. The hidden node TN-H2 ignores those portions

of the signal which are dominated by noise, and thus is able to process noisy inputs more

consistently than its clean-trained cousin.

10.3.2.2.4 Comparison of TN-H2 and T-H3 to Best 1st and N4 1st Dimensions

In the case of the noise-trained hidden node (TN-H2), which was highly correlated with the Best

first dimension and N4 first dimension (-0.81 and -0.83 respectively), we have seen a processing

strategy extremely similar to that apparently used by the human subjects. Both the Best subjects

and N4 alone placed the fastest-damping signals lowest on this dimension, as evidenced by the

correlations with the two damping measures. It is reasonable to assume that the subjects were

sensitive to these damping characteristics of the signals. TN-H2 made the same distinction using

the same information. The weights of this hidden node reacted to fast-decaying signals with high

activations, while producing low activations for long-decaying signals. Its weight structure was a

simple, elegant means of measuring the decay characteristic of each signal.

The hidden node T-H3, trained without noise added to the signals, performed a calculation that

may be considered an extension of that performed by TN-H2, although the calculation of T-H3

was considerably more complex. The strategy applied to the Brass 10% signals by T-H3 was the

same as that of TN-H2 and the derived strategy of the subjects, i.e., the fastest decaying signal

were separated from the others by their lack of energy beyond the first few inputs. Beyond these

signals the strategies of T-H3 grew more complex and specific to particular signals. The long-

decaying signals had to achieve their high activation using the third set of weights mentioned

(T-114 - T-130), since they received large negative contributions from the second set of weights

(T-I8 - T-I13). While it is not out of the question that subjects could have applied strategies as

complex, the tools for deriving those strategies were not sensitive to such complexities. Keeping

in mind that T-H3 was correlated with the first dimension of the Best solution at 0.94, one is led to

believe that relatively complex processing was necessary to achieve such a close match to a

dimension.

I
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10.3.2.3 Analysis of Air4H(2)F-H2 and Air4H(2)FN-H2

Another pair of mutually correlated hidden nodes which also have substantial correlations with the

Best and N4 first human dimensions are the frequency domain pair: Air4H(2)F-H2 (correlation

-0.84) and Air4H(2)FN-H2 (correlation -0.82). In this case, the correlation between the two
hidden nodes is +1.00, that is to say, perfect and positive.

10.3.2.3.1 F-H2 Analysis

The Thickness output nodes of Air4H(2)F place very large weight on Air4H(2)F-H2 (see Figure

10.3.2.3.1-I). In fact, it is safe to say that the only possible way a signal can overcome the

substantial bias toward 5% thickness is by activating F-H2. By contrast, the other output nodes

place relatively small weight on F-H2. Hence it may be concludeci that F-H2's primary (and neariy

exclusive) function is as a detector of 10% thickness. This task it performs perfeatly, giving

essentially 1.0 when a 10% signal is applied, and essentially 0.0 when a 5% signal is applied (see

Figure 10.3.2.3.1-2).

Moving now to the weights connecting hidden node F-H2 to the input layer, several features stand

out (see Figure 10.3.2.3.1-3). At the outset, one may notice that the bias term is very small. A

substantial bias would imply that the node starts out strongly activated (or deactivated) and that its

state is inverted by the presence of one type of signal (e.g. 5% or 10%). Because of the bias, the

node would only have to recognize one type of signal to classify both types correctly. However,

in the case of F-H2, the absence of a strong bias toward either signal type implies that the node

acti% A.,y detects each of the two types of signals it distinguishes. A glance at the weights reveals

clearly that inputs 110 (4500 Hz) and 115 (7000 Hz) are the primary detectors of 5% signals

(negative weights will tend to suppress the node), and that 10% signals are detected by a more

distributed combination, with significant emphasis on inputs 16 (2500 Hz), 17 (3000 Hz), 119

(9000 Hz) and particularly 121(10000 Hz).

To see how hidden node F-H2 detects 5% signals, consider Figure 10.3.2.3.1-4. The column plot

in Figure 10.3.2.3.1-4(a) shows the frequency domain input of a B5W signal, while the

superimposed line graph displays the cumulative sum of the hidden node F-H2 prior to the

application of the transfer function. From the latter, it is clear that, although the final cumulative

10-57

I



IFigure 1(a) _________

Material Weights

1 5 El HI~~~

10 mm__

-50
_ _ _ _ _ _ _ _N *H3

-10B

-15 H

I Figure 1(b)

Thickness Weights

15

*10 MENEM_____Bias_

0- 0H

I -10
-15H4

* __ _ _ Ten Five

* Figure 1(c) ___________________ _____

Striker Weights

* ~~~20 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

15 UBias
10

L 0I

>10-5



II
In u

010.

Il cc

II

10-59



Ia

___ _ ________6ZI -- - -- -__ --- ---- V 7
____ _ --____ _ _ ____ -.-- ____ - .

_____ ____ __ __ __9

I9

61~

I 81
LlC

91)I C1

___________

11C

I _ _ _ _01

LC

_ _ _ _ _ ____9

zC



Figure 4(a): 135W ____ ______

mhE~i-------------10

I -~~~~0.4 '~ EhhhU5

-0.62- 1

I-0.2 E--1
a -le M, wit -II M-Mw

-0.8

w 0. 5- E 0 0 t '

-I -I

I -~~~~0.8 {11111t11
-10

> -nu Node-
0_____ 0__________ _____ ____________

Fiue1....- umltv u fHdenNd i4l2Fl1I ~-. --- -nac Nin of Cl-e - 5 -- nd- EI 10~CA



sum of the hidden node F1-H2 is strongly negative (suppressed), it would he positive without the

large amount of s;..al energy present in input 110 (45M0 Hz). The precipitous jump in the output

occurring at ., input is both necessary and sufficient to classify this signal as 5%. Similar graphs

plotted for the other Brass 5% signals show that they suppress hidden node F-H2 even more

strongly on the strength of this input.

Figure 10.3.2.3.1-4(b) shows a corresponding plot for Steel 5% signals, in particular, an instance

of S5M. Clearly, a similar situation exists here; the hidden node is suppressed in this case by the

large signal input 115 (7(XX) Hz). Were it not for this input (and the corresponding negative

weight), the cumulative sum would be forced positive by the signal energy present in input 119

(9000 Hz). The cumulative sum resulting from the application of the other Steel 5% signals

follows the same pattern, and the output from F-H2 is even more strongly suppressed by them.

The classification of 10% signals performed by F-112 is slightly more complex. Shown in Figure

10.3.2.3-1-5(a) is an instance of B IW and the corresponding cumulative sum obtained by F-H2.

The positive final value of the cumulative sum results from a combination of large amounts of

signal energy in inputs 113 (6000 Hz) and 121 (10000 Hz), and more modest energy in inputs I1

through 112 (0 - 5500 Hz). The large negative weights on inputs 110 (45(X) Iz) and 115 (7000

Hz) reduce the cumulative sum, but the signal energy in these inputs is insufficient to suppress

hidden node F-H2. This is again typical of the other Brass 10% signals.

The Steel 10% signals show the largest variation in the shapes of their inputs (see Figures

10.3.2.3.1-5(h) and 10.3.2.3.1-5(c)). Nevertheless, they have one common feature: the

maximum signal energy is found in input 119 (9000 Hz). The high positive weight on this input is

enough to activate hidden node F-H2. In the case of SIM, this is the only significant contribution

to the cumulative sum, as shown in Figure 10.3.2.3.1-5(b). The input patterns of the Steel 10%,

Plastic and Wood signals are similar to each other, and more complex. The input and cumulative

sum for an SIP signal is shown in Figure 10.3.2.3.1-5(c). In this signal, there is significant

energy in inputs 110 (45(X) Hz) and 115 (7000 Hz). While the energy present in 119 is still

necessary for strong activation, it is not sufficient, due to the negative contributions in these two

inputs. The large negative jumps caused by these two "5%-like" inputs, especially the input 110,

are counteracted by the wide distribution of signal energy in inputs II through 19 (0 - 4(XX) Hz),

and I ll through 113 (50(X) - 60(X) kHz).
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To summarize, hidden node F-H2 classifies signals according to the Thickness of the target. The
inputs which are most important are inputs 110 (4500 Hz) and 115 (7(KX) t1tz), which are very
pronounced in the Brass 5% and Steel 5% signals, respectively. While there is substantial energy

in these inputs in some of the 10% signals, it does not suppress the node, due to a broad

distribution of moderate energy in neighboring (positively weighted) inputs, and large amounts of

energy in inputs 119 (9000 Hz) and 121 (10000 Hz) in the Steel 10% and Brass 10% signals,

* respectively.

10.3.2.3.2 FN-H2 AnalysisU
The other hidden node in this pair belongs to the related network Air4li(2)FN, similar in all
respects to the network discussed above, save that it was trained with signals to which noise had

been added. A comparison of Figures 10.3.2.3.1-1 and 10.3.2.3.2-1, which show the output
weights for networks Air4H(2)F and Air4H(2)FN, respectively, reveals that these two networks

weight hidden node H2 almost identically. From the output layer, it is therefore clear that FN-H2

is also a detector of 10% signals. This is not too surprising since the correlation between the pair

F-H2 and FN-H2 was +1.00. It was known at the outset that these nodes sorted the signals into
the same order. It is possible, however, for the two nodes to develop very different means of3 performing this classification. In this case, however, differences between the input weight

structures of the two nodes are completaly inconsequential (see Figires 10.3.2.3.1-3 and
10.3.2.3.2-2). Many of the smaller weights differ noticeably between the two hidden nodes, but

the large, influential weigh. are virtually identical in both. It is interesting that training with noise
had a large effect on the weights developed in the time domain Air 4 hidden node networks, but

very little effect on the hidden node Air4H(2)F-H2. This may have some bearing on the fact that

among the Air 4 hidden node networks in frequency domain, the clean-trained network actually

performed better than the network trained with noisy signals.

10.3.2.3.3 Comparison of F-H2 and FN-H2 to Best 1st and N4 1st Dimensions

As discussed earlier, the two first dimensions have both time domain and frequentcy domain

explanations which were demonstrated by correlations with signal measures in both domains, and

by listening. The two frequency domain hidden nodes reflect some of the same processing

strategies that were found earlier, namely in the relationships between these dimensions and the
standard deviation and curve fit frequency. Both the standard deviations of the signals and the
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U
frequencies of their most persistent sine waves (found in the curve fit solutions) are negatively

correlated with both dimensions. The weights on both hidden nodes reflect the relationships with

standard deviation and frequency, indicating that the nodes are sensitive to signal features similar to
those to which the subjects appeared to be sensitive (in some combination with the time domain

feature of decay) on these dimensions.

Viewing the weights of F-H2 gives strong indications of the sensitivity of this node to both the

standard deviation and frequency of the ringing portion of the signals. The node gives strong

activation for 10% signals, and does so using the large positive weights in bins 6 and 7, and those

in 19 and 20. The node is suppressed by signal energy in bins 10 and 15, which are closer

together than the bins needed to excite the node. Assuming signals provide energy in both areas in

order to excite or suppress the node, signals that suppress the node have a smaller distribution of

energy than signals which excite the node. This is in keeping with the negative correlation between

standard deviation and the two first dimensions for Air signals. Examination of the frequency

distributions of the signals reveals that those signals of 10% thickness with Plastic and Wood

strikers have strong low frequency components spread over several bins as well as peak

frequencies at bins 19 or 21. Signals of 5% thickness do not have substantial frequency

components at these extremes.I
The node also tends to activate strongly for signals with high frequencies of their most persistent

sine wave component. This signal measure is only concerned with the frequency component

which persists the longest in the signal and is the portion of the signal which a listener may

describe as the ringing portion. We assume that this frequency component dominates the
spectrum. We then note that Steel 10% signals ring at bin 19 (which starts at 9.0 kHz), while Steel
5% signals ring at bin 15 (7.0 kHz). The Brass 10% Metal signal rings at bin 21 (10 kHz), the

other Brass 10% signals at bin 13 (6.0 kHz), while Brass 5% signals ring at bin 10 (4.5 kHz).
When only the ringing frequency is considered, the node activates strongly for signals of high

frequency, which tend to be the 10% signals.

10.3.2.4 Summary of Hidden Node Processing

In summary, the two frequency domain hidden nodes were trained to give high activations for
signals of large standard deviation and high ringing frequency. These two signal characteristics

were also the primary frequency domain features by which the signals on the first human
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dimensions of each scaling solution are sorted. They were audible to the listener as described

above, and presumably were part of the subjects' processing strategies. The node of course must

identify the frequencies exactly, while the subjects were free to apply a less restrictive rule. The

time domain hidden nodes described previously also found a signal feature by which the first

dimensions are sorted, a feature related to the damping characteristics of the signals. Both time and

frequency domain nodes appeared to be applying signal processing strategies which are closely

related to those of the subjects on the first dimensions of each scaling solution.

10.3.3 Best Second and N4 Third DimensionsI
These dimensions are quite highly correlated at -0.93, yet there are important differences in the

breakdown of signals. The high correlation is due to strong similarities in the extremiP'is of the

dimensions. In particular the Brass 5% signals are grouped at opposite extremes of each

dimension. At the other extremes of each dimension are SIM and S5M. The remaining signals are

distributed between the extremes in a somewhat different manner for each dimension. The Best

second dimension places S5P with the extreme Steel signals, but has all other signals in a relatively

tight group in the middle of the dimension, with no apparent ordering by parameter.

The N4 third dimension is arranged differently in the middle. This dimension divided the signals

by Material with no overlap. All Steel signals are lower on the dimension than any Brass signals,

* although the nearest two signals of different Material are very close. The signal feature represented

by this dimension was presumably used by N4 to make Material judgments, which this subject did

with approximately the same high performance as the other two subjects in the Best solution

(0.86). No other dimension of N4 differentiates Material. The third dimension of the Best

solution has the signals separated by Material with one exception, yet the values of the signals are

I different enough from the N4 third dimension to prevent a significant correlation.

10.3.3.1 Dimensions Analysis

The two dimensions in question are highly correlated only with two frequency domain statistics,

the mean and mode. These measure the location of the "center" of the frequency distribution, one

by taking an arithmetic mean and the other by identifying the single strongest frequency. In

practice on these signals the two are very similar. The correlations indicate that signals high on the

I
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Best second dimension have high mean and modal frequencies, while signals high on the N4 third

dimension have low mean and modal frequencies.

Listening confirms these relationships. The placement of the Brass 5% signals low on the Best

second dimension is accounted for aurally by the low frequency of the ringing portion of these

signals. This low frequency component distinguishes the Brass 5% class from all other signal

classes which ring for the same duration as the Brass 5% signals. This relationship accounts for

the strong correlations between the dimension and the mean and modal frequency statistics. This
frequency characteristic does not extend, however, to signals other than Brass 5%. That is, the

remaining signals taken by themselves do not show correlation with the mean frequency, nor with

other signal statistics. Listening reveals some characteristics of this group of remaining signals.

Three signals are very high on the dimension: SIM, S5M, and S5P. These signals share the

characteristics, relative to the six remaining signals, of having long ringing portions and very little
impact sound distinct from the beginning of the ring. The remaining six signals, which are

relatively close together near the middle of this dimension, have distinct impacts followed by either

a vibrato ringing portion in the remaining three Steel signals or virtually no ringing portion at all in

the Brass 10% signals.

Listening to the N4 third dimension leads to similar observations. The mean has a high negative

correlation with this dimension primarily due to the placement of the Brass 5% signals high on the

dimension. These signals have considerably lower mean frequencies than all other signals, and
this effect is easy to hear when listening to the signals ordered on this dimension. The mean would

not appear to be highly correlated with the dimension if the Brass 5% signals were not considered.

Listening suggests that the subject was using a combination of mean frequency and ringing
characteristics on this dimension. Note that the material of the target is perfectly separated on this

dimension (although the difference between BIM and S1W is very small). The three Brass 10%

signals are very highly damped. Subjectively, this serves to diminish the perception of high

frequency content in these signals. While for their relatively brief duration they actually have a

fairly high mean frequency, their damping tends to mask this content. This suggests that the

subjects placed these signals lower than the Steel signals due to a perceived lack of high

frequencies.

I Mean is a reasonably good predictor of the signals' values on the Best second dimension:

I
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I R2(adj) = 54.3%

Mean p = 0.0037I
Mode is almost as good, but both are good predictors only in their ability to discriminate Brass 5%

signals from all others.

As expected, mean is also the best predictor for N4:

R2(adj) = 54.6%

Mean p = 0.0 0 36

Although in this case, low frequency slope made a significant addition to the regression:

R2(adj) = 68.6%

Mean p = 0.015
Low Frequency Slope p = 0.0445

Low frequency slope is used to discriminate the Brass 10% signals from the remaining signals, as

shown in Figure 10.3.3.1-1. Brass 10% signals have a higher slope, indicating that they have a
sharper cutoff of low frequencies, presumably related to their rapid damping characteristic.

Brass
0.75 10%

0.0

00

rI 0 * 0

I -0.75* I I I

1.00 e-7 3.00 e-7

Low Frequency Slope

Figure 10.3.3.1-1 Low Frequency Slope vs. Regression Residuals
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10.3.3.2 Analysis of Air4H(2)T-H2 and Air4H(2)TN-H3

3 This pair of nodes is of particular interest due to correlations with the human subject dimensions
Best-2 and N4-3. There is also a large, negative correlation between the two nodes themselves.

The parent networks of these nodes, Air4H(2)TN and Air4H(2)T, were trained from identical

initial conditions, with and without training noise, respectively. It is desirable to begin by studying

the node from the network trained with noise, since it presents a simpler input weight structure.

For brevity, within the following discussion, these two networks will again be referred to simply

as TN and T.I
10.3.3.2.1 TN-H3 Analysis

Among the output nodes, TN-H3 is used very heavily as a detector both of Brass and 5% signals

(see Figure 10.3.1-2). It does not serve to detect either Metal or Wood signals, and although the

Plastic output node (TN-P) places positive weight upon it, it is doubtful that TN-P performs a

useful computation. Thus, the node is used to determine Material and Thickness, but not Striker.

The input weights for TN-H3 are shown in Figure 10.3.3.2.1-1. The large negative bias can be

overcome by sufficient energy in the rangeTN-12 through TN-17. Outside this range the product

of the decaying signal inputs with the small weights is too small to influence the final state of the
node significantly. Rapidly decaying signals cannot overcome the bias, and thus remain strongly

negative, while the activation resulting from longer signals is less negative or even positive,

depending on the exact distribution of energy. The general shape and behavior of the input

weights is very similar to that of another node in the same network, TN-H2. It turns out that there
are some interesting similarities between these two nodes, which will be discussed later.

The responses of TN-H3 to instance nine of the various signals are shown in Figure 10.3.3.2.1-2.

Before applying the transfer function to the outputs (lower axis plot), the largest division between

any two signals is the gap of approximately 5.3, between classes SIM and B5M. This break is the

only one to which any significance can with confidence be ascribed; it divides the Brass 5% signals

from the rest. The upper axis plot shows the final result after application of the transfer function.

Since only Brass 5% signals activate the node, it is a perfectly accurate detector of these signals.

This is consistent with the heavy weights placed upon TN-H3 by the output nodes TN-B and
TN-Five. This fact, in consideration of the weights placed upon the other hidden nodes, also
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implicates hidden node TN-HI as a detector of Brass 10% signals. Cumulative sum graphs for all
signals were examined. From this it is obvious that the cumulative sums for TN-H3 yielded
virtually identical (inversion notwithstanding) patterns to those for TN-H2.

10.3.3.2.2 T-H2 Analysis

The cleanly trained counterpart of TN-H3 is the hidden node T-H2. The two nodes have a

correlation of -0.99, suggestive that their algorithms sort the signals into opposite orders. The
Material and Thickness weights of the network are consistent with the negative correlation; the

node is used moderately as a detector of Steel 10% signals. In contrast to TN-H3, however, T-H2
is used as a detector of Metal, and a rejector of Wood and Plastic Strikers.

As might be expected in a network trained with clean signals, the input weight structure of T-H2 is

much more complex than that of TN-H3 described above. The input weights of T-H2 are shown

in Figure 10.3.3.2.2-1. Although their appearance is rather forbidding, the structure can be

understood by breaking the weights into groups. Since this is a clean-trained network, the bias

and first input weights may be combined to yield a large effective bias of almost +30. It is
convenient to divide the remaining weights into the two sets T-12 through T-19 and T-I10 through

T-132. The latter group is dominated by positive weights, of moderate strength; the longer the
signal, the more this group will pull the cumulative sum toward positive values. For the longest

signals, this contribution is significant, but not overwhelming.

The first group (T-12 through T-19) are mostly negative weights which process the most energeticI] portion of the signals. Ignoring temporarily the positive weight on T-16, it is safe to say that this
group as a whole will make a negative contribution to the cumulative sum. The slower the signal

decays, the larger in magnitude is this contribution. The positive weight on T-16 is not sufficient to
prevent this. To see what effect this positive weight has, consider as a pair the inputs T-15 and3 T-16. For a signal which is steady or decreasing through these two inputs, it is clear that the

contribution of this pair will be negative, due to the relative magnitudes of the weights. If more
energy is present in input T-16 than T-15, the magnitude of the pair's contribution will be reduced.
This is the case for some of the boomerang signals, such as B IP and B 1W, in which the return of

* signal energy is increasing in this range.
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In summary, then, the node T-H2 starts with a very high positive effective bias. This is only
reduced by energy in the early portion of the signal, so short signals tend to activate the node

strongly. A slowly decaying signal can overcome the high bias in the first group of inputs, but may
be pulled significantly back toward positive values by the last group of positive weights. The

positive weight on T-16 has relatively little effect on the activation of most signals, but may be a

sensor of B I P and B 1W signals, due to their unique shape.

The final issue is how the node's output responds to the various signals. A glance at this node's
activations, shown in Figure 10.3.3.2.2-2, shows that they are virtually identical to those achieved

by TN-H3 (see Figure 10.3.3.2.1-2) after the transfer function is applied (upper axes). Prior to
the application of the transfer function (lower axes), it is clear that the two algorithms yield

different results. Whereas the break between Brass 5% signals and the rest is the only definite
division performed by hidden node TN-H3, T-H2 has in addition two clearly defined breaks which
sort the signals further. As expected, only the longest signals (Brass 5%) were able to produce
low activations of T-H2.

10.3.3.2.3 Comparison and Contrast of Hidden Nodes TN-H3 and T-H2

The inverse nature of the classifications performed by these two nodes is suggestive of how output
layers use hidden nodes. The hidden nodes TN-H3 and T-H2 are almost perfectly negatively

correlated, which implies that they sort signals into opposite orders. Yet, the output layers of the

two networks do not use the nodes in opposite ways. This seems at first counterintuitive, but the
activations shown in Figures 10.3.3.2.1-2 and 10.3.3.2.2-2 may help to clarify this point.
Hidden node TN-H3 is used very heavily as a Brass 5% detector, because when it is activated, the
applied signal is certainly of type B5M, B5P or B5W. On the other hand, when T-H2 is strongly

activated, one can with certainty only make the statement that the applied signal is not a member of
this class. This is a weaker statement because it means that the signal is from a Steel target, or
10% Thickness, or both. Which of these is the case is not accurately determined by the node

T-H2, hence it is not used by the Material and Thickness nodes as much as TN-H3.

It was stated above that the general pattern of the input weights of TN-H3 (see Figure

10.3.3.2. 1-1) is reminiscent of the input weights of another hidden node in the same network,
TN-H2 (see Figure 10.3.2.2.1- 1). The input weights of TN-H2 roughly resemble the inverse of

TN-H3's weights. The correlation between TN-H2 and TN-H3 is only -0.44, however, so
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I

despite the apparent similarity, the two nodes respond very differently to the various inputs. On
closer examination of TN-H3, some differences may be observed in the input weights. In TN-113,

the input weights are noticeably "flatter" in the range TN-12 through TN-17. It is plausible that

these more uniform weights respond to the total quantity of energy present in TN-I2 through

TN-17, while the tapered structure developed by TN-H2 is more sensitive to the decay

characteristics of these inputs. Another difference between the two nodes is that the output of
TN-H3 is more greatly affected by its negative bias than TN-H2 is affected by its positive bias.

This will prove to be the critical difference between the nodes.

The activations of TN-H2 and TN-H3 (see the upper axes of Figures 10.3.2.2.1-2 and

10.3.3.2.1-2) produced by the various signals are quite different. The hidden node TN-H3 is only

activated by three signal types, while TN-H2 is activated to varying degrees by a disjoint set of six

signal types. Consider, however, the lower axes of these two graphs which show the cumulative

sums of the nodes achieved by the signals. These graphs show that these nodes distribute the

signals into exactly the opposite order. Moreover, the gaps between each signal and the next are

proportionally almost the same for the two nodes. Prior to the application of the transfer function,
then, the two nodes perform virtually the same (albeit inverted) calculation on the inputs. Of

critical importax..e is how the signals are oriented relative to the origin. For example, if TN-H3

sorted the signals into the same order, but shifted their cumulative sums by approximately +13.25,

the origin would be situated between the signals S 1W and S5W. The final output of TN-H3
would then resemble very closely the inverse of TN-H2. This shift of the signals can be

accomplished, merely by adding 13.25 to the input bias of TN-H3. The result of this
transformation is shown in Figure 10.3.3.2.3-1. The differences between this graph and the

inverse of Figure 10.3.2.2.1-2, which displays the activations of TN-H2, are very slight.

In conclusion, TN-H3 was found to be a very accurate detector of Brass 5% signals, while T-H2

is a rejector of this same signal type. This is consistent with the strong, negative correlation
between the two. The algorithm developed by TN-H3 was simple, involved few inputs, and

strongly resembled the inverse of that developed by TN-H2. The main qualitative difference

between these latter two nodes lies in the relative strength of the bias weight. This subtle

difference is sufficient to allow the nodes to respond very differently to the signal set.

The hidden node T-112 used a very different algorithm, involving more of the inputs in a complex

computation. The algorithm essentially balances the energy in the first nine inputs with the energy
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in the rest of the inputs to categorize the signals. The algorithms developed by the network trained

with noise focus on only the early portion of the signal, performing similarly by balancing the

signal energy against a bias weight.

The presence of training noise helps the networks find a more general and robust solution. In the

Air time domain networks, this took the form of simpler weight structures which rely most heavily

on the early portion of the input (which contains the largest signal values). Different hidden nodes

I in the same network may perform almost redundant calculations and still provide different

information to the output layer. This can occur because inverting the input weights and/or altering

the bias can dramatically affect which signals activate the hidden node.

3 10.3.3.3 Comparison of TN-H3 and T-H2 to Best Second and N4 Third Dimensions

While the correlations found between the dimensions, Best second and N4 third, and the signals
statistics indicated frequency domain relationships, these netwoirk nodes were able to produce

correlations above chance levels with the dimensions using time domain signal input. The two

scaling dimensions thus appear to have a dual time/frequency characteristic. In fact, the correlation

between TN-H3 and the Best second dimension is due entirely to the high activation of TN-H3 by

the Brass 5% signals vs. 0 activation for all other signals. We tend to reject the theory that the

subjects applied the pure time domain strategy found at this node since the signals are more evenly

distributed on the dimension than are the activations produced by the node.

The network devised a simple time domain strategy to perform its classification of the Brass 5%
signals. This strategy consisted of rejecting all signals (using a large negative bias) which did not

have significant energy relatively late in the signal. Only the Brass 5% signals passed this test.

I T-H2, trained without noise added to the signals, found a highly negatively correlated, but rather

more complex, solution. While the listener is struck by the frequency domain differences between

the Brass 5% signals and others, and frequency measures correlated best with this dimension, the

network has demonstrated a time domain analog to this strategy which was not discovered through

* other means.

I
I
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I
10.3.3.4 Analysis of Air4H(2)FN-H3

Hidden node 3 from Air4H(2)FN, FN-H3, is correlated with the Best 2nd dimension at -0.71 and
with the N4 third dimension at 0.77. These relatively strong correlations are of particular interest

because the signal measures correlated with these dimensions were both computed in the frequency

domain, and this node used frequency domain input. The strategy on this node shed light on the

arrangement of signals on the dimensions in question.

The dimensions were correlated with the mean and the modal frequencies of the signals from each

* class. The Best second dimension was positively correlated while the N4 third dimension was

negatively correlated. Signals which had high mean or modal frequencies (which are themselves

highly correlated) tend to be high on the Best 2nd dimension, and low on the N4 third dimension.

FN-H3 achieved its correlation with the dimensions by sorting the signals as shown in the

activation chart in Figure 10.3.3.4-1. This shows that a group of Steel signals, SIM, S5M, SIP,

and S5P, suppressed the node, while all other signals excited the node. There are no signals

which produced moderate activation. This is the opposite of the means employed by the time

domain nodes described previously to achieve high correlation with these dimensions. On both

dimensions the 12 signal classes are distributed relativel) eývenly, with the Brass 5% group at one

extreme and the Steel Metal Striker pair of signals (plus S5P in the case of Best second dimension)

at the other extreme. The time domain hidden nodes differentiated the Brass 5% signals from all

others, while this frequency domain node separates the Steel, Metal and Plastic Striker signals

* from all others.

These dimensions tend to separate the signals by Material, especially N4 third dimension. In

keeping with this distinction, FN-H3 is used by the output layer as a detector of Brass signals.

This makes sense since only two of the eight signals which activzte this node are Steel. The node

is also used as a detector of Wood Striker signals, and the four Wood Striker signals activate the

node along with four other signals.

The weights from the input layer to FN-H3 are shown in Figure 10.3.3.4-2. Although they appear

rather arbitrary, certain features are noticeable. The bias is large and positive. The largest positive

weights are of lower frequency than the largest negative weights. A weighted average frequency

computed on the positive weights would clearly be lower than that computed for the negative
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I
3 weights. Thus, signals with their primary energy in lower frequency bins would tend to activate

the node while signals with primary energy in higher frequency bins would tend to suppress the
I node. Since the node is negatively correlated with the Best second dimension, signals which

suppress the node tend to be high on that dimension, and we saw above that the dimension is
positively correlated with the mean and modal frequencies of the signals. Thus the weights

considered by themselves tend to support the theory that this node applies a processing strategy
similar to that found on the dimension, one based largely on average frequency content.

These observations were verified by analysis of the cumulative sums of the node when various
signals were applied. All four of the signals which suppress this node do so exclusively using the
large negative weight on bin 19. An example, SIM, is shown in Figure 10.3.3.4-3(a). With the
exception of B IM (shown in Figure 10.3.3.4-3(b)), all other signals have their predominant
energy, or peak energy, or both, at lower frequencies. Examples of these signals are shown in
Figures 10.3.3.4-4(a) and 10.3.3.4-4(b).

This frequency domain node developed an activation strategy which produced results correlated

with both of the human dimensions in question, and which in fact closely resembles the human
processing strategy derived from the analysis of signal measures described earlier. In the case of
FN-H3 a neural network node used largely the same processing strategy as that apparently used by
the subjects to sort the signals into a highly related sequence. Meanwhile the time domain nodes
that were correlated with the same dimensions found a strategy in the time domain which is related,
in the sense of sorting the signals into another sequence highly related to the dimensions. These
processing strategies in the time and frequency domains illustrate the potential of the networks to

reinforce human strategies and to illuminate other potential str.ies which might be employed.

10.3.4 Best Third Dimension

On the third dimension of the Best scaling solution the signals are divided by Material with one

exception, S5M. At the high extreme are the three Brass 10% signals. At the low extreme are a
group of Steel signals, S5W, SIP, and S1W. On the first dimension of the Best solution these six
signals were grouped together to form one half of the dimension. Using the strategy of the third

I dimension, however, the subjects were highly sensitive to a difference between these groups. This
strategy would also seem to be the primary means by which the three subjects as a whole achieved
high performance discriminating the material parameter.
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10.3.4.1 Dimension Analysis

The only high correlation to this dimension is with low frequency slope, indicating a sharper cutoff

of low frequencies in the signals higher on the dimension, such as the Brass 10% signals. This is

consistent with the relationship between the Brass 10% signals and the third dimension of N4 at

the second step of the regression.

When the highly damped Brass 10% signals are not considered, the dimension correlates quite well3 (-0.85, as shown in the plot of Figure 10.3.4.1-1) with the frequency of the most persistent sine

wave in the curve fit solution. Listening verifies this relationship. The Brass 10% signals sound

quite different from other signals in damping so quickly, and we speculate that the subjects

processed this difference in duration along with the differences in frequency. They may have

interpreted the lack of ring as a lack of high frequencies, which would place the Brass 10% signals

high on this dimension.

I
Brass
Brs5% * S5M

. o0.00

o.-iCI •S5P
' -0.75 Steel 10%3 .• and S5W

-1.50

3000 3750 4500

Frequency

3 Figure 10.3.4.1-1 Frequency vs. Best Third Dimension Without the Brass 10% Signals

n Low frequency slope is the leading candidate for inclusion in a regression, giving:

I
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R2(adj) = 74.4%

Low Frequency Slope p = 0.0001

The inclusion of the amplitude of the most persistent sine wave is significant in accounting for the

remaining variance:

R2(adj) = 82.4%

Low Frequency Slope p •0.0000

Amplitude p = 0.0424

The presence of a time domain predictor is surprising given the correlation with a frequency

domain measure as well as the impression made on the listener.

10.3.4.2 Analysis of Air4H(2)F-HI and Air4H(2)FN-HI

Hidden nodes Air4H(2)F-H I and Air4H(2)FN-H 1, referred to for the rest of this section as F-HI

and FN-H1, are both correlated with the Best third dimension at 0.80 and with one another at

0.96. Both of these nodes are used by their respective networks to detect Steel signals.

10.3.4.2.1 F-Hi AnalysisI
Since the network trained without the addition of noise to its inputs classified the material

parameter perfectly, and F-H1 is the only means of doing so, we may safely assume that the node

was activated by Steel signals and suppressed by Brass signals. This was verified by the

activation graph shown as Figure 10.3.4.2.1-1. This also served to explain the high negative

correlation with the Best third dimension, which tended to sort the signals by Material with Steel

signals low on the dimension. The high correlation between the activations of the two nodes

indicated that they produced quite similar outputs.

The input weights of F-H 1, shown in Figure 10.3.4.2.1-2, appeared rather complex. There were

several frequency bins by which a signal could be detected or rejected. However, the various

classes of signal interacted with these weights in a limited number of ways. The Brass 10%

signals were rejected due to high energy in bins 13 and 21 (see Figure 10.3.4.2.1-3(a)). Each

Brass 5% signal was rejicc'•d due to its energy in bins 10 and 13 (see Figure 10.3.4.2.1-3(b)).
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Figure 3(a): BIM
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The Steel 5% signals, along with S I M, are detected because they have high energy in bins 15 and

19 (see Figure .0.3.4.2.1-4(a)). SIP and S IW activate the node using a broad range of high

energy in bins 3 - 13, and with a peak in bin 19 (see Figure 10.3.4.2.1-4(b)).

I 10.3.4.2.2 Analys's of Air4H(2)FN-H1

I Hidden node Air4H(2)FN-H1 is quite similar to Air4H(2)F-H1. The input weights of FN-H1 are

shown in Figure 10.3.4.2.2-1. The signs and relative magnitudes of the weights are almost all the

same as those of F-HI. There was decreased relative emphasis on bins 15 and 19, although these

weights are still high enough to play the same roles as in F-HI, and increased relative emphasis on

bin 17. The sorting order is quite similar, as seen in Figure 10.3.4.2.2-2, with the exception of

the Brass Wood Striker signals, which receive moderate activation instead of none. The higher

bias of FN-H1 helped to account for this.

10.3.4.2.3 Comparison of F-HI and FN-HI to Best Third Dimension

In summary, the weights in the range 14 to Il1 serve to detect SIP and S1W, which have broad

I high energy in this range. Other high weights are tuned to particular subclasses, including 110.

These peaks are highly reminiscent of the relationship described above (high negative correlation)

between the frequency of the most persistent sine wave component of the signals, and the

dimension excluding the Brass 10% signals. The Brass 10% signals have no ringing portion, and

may be processed as a special case by the subjects. The remaining Brass signals (5%) peak in

energy at bins 10 or 13, while all of the Steel signals peak at the higher frequency bins 15 or 19.

The Steel signals appeared to have generally higher frequency components than the Brass 5%

signals, and by this characteristic the node produced high activations for the Steel. signals.

10.3.5 N4 Second Dimension

This is the only dimension with a partial breakdown of .he signals into groups by Striker.

Probably not coincidentally, this subject was the highest performer on the striker parameter (59%

vs 46% and 43%). The Metal striker signals are separated from the rest and placed low on this

dimen.sion. Whatever signal feature the subject used to distinguish the Metal signals apparently did

not succeed with the other Strikers, as they are mixed. However, the remaining signals are divided
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I
by Material, with the four remaining Brass signals the next higher group, followed by the four

remaining Steel signals highest on the dimension. The four Brass signals are also grouped by
Thickness, in keeping with their groupings on the other two dimensions of N4. Presumably the

signal feature associated with this dimension sorted the signals into groups of Metal striker,

remaining Brass, then remaining Steel.

10.3.5.1 Dimension Analysis

The only significant correlation between this dimension and a statistical measure is with the initial

amplitude of the most persistent sine wave of the curve fit solution. This high negative correlation

(-0.83) can be recognized when listening to the signals. The four Metal signals are lowest on this

dimension and have the highest initial amplitude. Higher on the dimension are signals which may

ring as long as any other signal, but which start from a lower amplitude. This relationship is

captured best by the amplitude measure, which applies only to a sine wave at a single frequency,

found by the curve fit algorithm. Correlation with the "decay amplitude," which accounts for all

energy in the signal, was lower at 0.60. This may indicate that the subject was not sensitive on3 this dimension to any distinct impact sound or to frequencies other than the longest-lasting.

Listening to this dimension suggested that the subject was focusing attention on the onset of the3 rirging portion of the sound, the magnitude of which was captured reasonably well by the

amplitude measure as described above.

H Amplitude is the best single predictor of the dimension. This is so because the amplitude measure

rates the Metal signals and the Brass 5% signals, as one group, higher than the remaining signals.

This is shown in Figure 10.3.5.1-1.

3 It would appear that this is a good approximation of the technique used by the subjects on this

dimension. Using amplitude as the predictor yields:I
R2(adj) = 65.7%

3 Amplitude p = 0.0008

I
I
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I Figure 10.3.5.1-1 Amplitude vs. Second Dimension

I
10.3.5.2 Analysis of Air4H(2)F-H4 and Air4H(2)FN-H4I
Hidden nodes Air4H(2)F-H4 and Air4H(2)FN-H4 (henceforth referred to as F-H4 and FN-H4)
were correlated with the N4 second dimension at -0.80 and -0.81 respectively. The nodes are very

highly correlated with one another (0.99), and achieved that correlation with almost identical
weights. Because the weights are essentially the same, only F-H4 is discussed below.

No time domain hidden nodes correlated significantly with the dimension. Although the most
highly correlated signal measure was the initial amplitude of the most persistent sine wave found in
the curve fit solution, the envelope of the signal which was presented to the time domain networks

did not include information at such a fine level. If the initial amplitude were indeed a good
description of the signal processing that the subject was using on this dimension, the time domain
neural networks had no way of using the same strategy.

Both F-H4 and FN-H4 were used by their respective output layers as detectors of Metal strikers,

as seen in Figures 10.3.2.3.1-1 and 10.3.2 3.2-1. The output layers were expecting these nodes
to isolate the Metal striker signals in much the same manner as did the dimension. Indeed, the
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response of the F-H4 to all of the signal classes (seen in Figure 10.3.5.2-1) shows that the node

produced high activation only for the Metal signals. The node did not arrange the remaining3 signals as the dimension did, but performed the single critical task of detecting the Metal signals.

The strategy by which F-H4 detected the Metal signals is embedded in the hidden weights shown
in Figure 10.3.5.2-2. The first logical group of weights is II - I11, which are negative except for
the very small weight on I1. Since these weights would serve to suppress the node, and the node
is suppressed by Plastic and Wood signals, it is reasonable to look for high energy in Plastic and
Wood signals in this region (and to expect Metal signals to have little energy in this frequency

band). Input weights 112 - 132 are generally positive, with two exceptions (114 and 116). This
group of weights has more variability in weight values than the first group. A few weights are
very strong, indicating greater selectivity among the frequency bins when identifying Metal

signals.

I The bias on F-H4 is approximately 2, which tends to activate the node, but not strongly compared
to many of the weights. The bias is easily overcome by the product of the weights in the bandI I -
I11 for Plastic and Wood signals which, unlike Metal signals, contain significant amounts of
energy at these frequencies. Plastic and Metal striker signals thereby suppress the node. These
signals do not take advantage of the negative weights on 114 and 116.

Three of the four Metal striker signals rely on the bias for detection. That is, they have so little
energy in the portion of the frequency band which is negatively weighted that the modest bias
remains the major component of the sum on the node. These signals are illustrated by the hidden
node response to BIM, shown in Figure 10.3.5.2-3(a). The Brass 5% Metal signal class is the
only exception. As shown in Figure 10.3.5.2-3(b), it has enough energy in the band 11 - I11

* particularly 110 and 111, to suppress the node by interacting with the weights that normally process
Plastic and Metal signals. To overcome this, the network developed positive weights at 112, 113,
122, and 127. These are present only to produce high activation for B5M.

10.3.5.3 Comparison of F-H4 and FN-H4 to N4 Second Dimension

F-H4 and FN-H4 developed a simple method of identifying Plastic and Wood striker signals and
differentiating them from Metal striker signals. For the single case of a Metal signal which meets
the criteria set forth by the nodes for Plastic and Wood signals, the nodes developed a special case.
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Figure 3(a): BIM
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I
Both nodes found a very general solution to the problem of differentiating the Metal signals from

Plastic and Wood signals based on frequency domain input, and in the single case in which the
general solution would not work the nodes developed a special case to handle that signal.

While no network developed a time domain node with activations highly correlated to this
dimension, the form of signal input may have prevented this. At the least, the envelope form of

time domain input prevented these networks from developing the strategy described above and

based on the initial amplitudes of particular frequencies. The best four hidden node time domain
neural network achieved 84.4% performance on Striker however, indicating that the envelope form

of input did contain information about the Strikers. The subjects, on the other hand, did have both
time and frequency information to use. There would appear to be some processing in both

domains by the subjects, given the relationship between the dimension and the initial amplitude of
specific frequencies in the signals. Given only the frequency information with which to

differentiate the signals, networks were able to perform essentially the same processing as this

dimension. Although the subjects used frequency domain information as well as time domain, to a

large extent this node found a purely frequency domain method for making the same distinctions

among the signals that the subjects did using substantial time domain infoi-ination.

10.4 SUMMARY

The comparison of subject dimensions, signal measures, and network nodes illuminated the

comparative processing strategies of subjects and networks. The signal measures were the initial

means of modeling the dimensions created by scaling confusion data from the classitication

experiment. Lacking a direct means of observing subject acoustic processing, the signal measures
were a means of examining the dimensions and implying processing strategies at a useful level of

detail. These measures were not always easy to develop or to apply. The model of a dimension
depended on the choice of appropriate signal measures, forcing the researcher to make assumptions

about the likely means by which the subjects approached the classification tasks. Nevertheless, the
models derived from signal measures are reasonably accurate predictors of the placement of signals

on the dimensions and appear to the listener to describe legitimate processing strategies for the
given signals.

U Analysis of the hidden nodes which were correlated to the human dimensions proved feasible and

very informative. In fact the development of correlated hidden nodes emerged as a practical means
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of investigating human processing strategies on the dimensions. comparison of network and
human processing revealed both strong similarities in processing methods under proper signal

conditions as well as differences which could be exploited by human listeners. Experience with

these analysis methods suggests several insights.

I Scaling dimensions capture essential elements of the subjects' processing strategies.

The dimensions can be modeled at a useful level with readily available signal

measures, with limitations on the depth of the models stemming from the relative

lack of complexity of the signal measures.

* Neural network strategies to accomplish the same task as subjects may beI essentially identical if the signal input provides the same information that the

subjects used. This is particularly evident if noise is added to time domain signals.

Networks will derive related strategies if signal input is in a different form than that

3 used by subjects.

n Networks may be used directly to explain human processing when networks nodes

are correlated to human dimensions and signal input is in an appropriate form.

1
I
I
I
I
I
I
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11.0 DISCUSSION

The project gave insight into several areas of acoustic processing by people and by neural

networks. These are discussed here ir terms of the relative performances of the two subject

groups, and of the subjects vs. the neural networks. The effects of applying low signal-to-noise

ratio signals to the network's performance and processing strategies are discussed. The

relationships among human dimensions, which are assumed to represent human processing

strategies, and the network hidden nodes are discussed. Finally, logical extensions of the work are

mentioned.I
11. 1 CLASSIFICATION PERFORMANCE

Hu The human subjects were confronted with very difficult tasks in attempting to classify the

underwater sounds. Many of these discriminations were too difficult for any subject to make, asI indicated by the several performance levels at or near chance. Under these conditions, any

possible differences between the subject groups were generally masked. Nevertheless, the Navy

subject group performed significantly higher than the student group on one aspect of the Bottom

signals, suggesting a difference in capabilities which a more reasonable task might illuminate.

The Air signals were created to provide a classification task of reasonable difficulty. These signals

proved much easier for both subject groups to classify, while still providing the confusions needed

by the scaling algorithm. Most subjects classified each of the three parameters above chance

levels. When faced with this taZk of moderate difficulty, performance differences between the twoI subject groups emerged. Navy subjects as a whole were significantly better than the student group

on several aspects of the Air signal classifications tasks. Student subjects were never significantly

* better than the Navy group.

3 Properly configured and trained neural networks performed much more highly than the human

subjects. Much of this difference is due to the signal transformations necessary for the networks

(necessary to increase performance and meet size and processing time restrictions). For instance,

one can see the differences between signals in the frequency domain form used as network input,

and the networks also found these differences. The subjects however probably could not always

hear these differences, particularly in the underwater signals. In addition, neural nets are notorious

I
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for finding artifactual differences between input classes. This tendency was part of the motivation

for adding noise to the input signals.

Networks which used frequency domain input had higher performance than networks which used

time domain input. Both kinds of input are highly processed from the original state of the signals,

and the information content may not be comparable due either to that pr(, zessing or to inherent

limitations of the domains. Certainly the time domain inputs lose much information when they are

enveloped and downsampled, as do the signal spectrums when they are averaged. Both techniques

tend to reduce the quantity of artifactual information available to the networks as they reduce the

signal information to manageable levels. Frequency domain signals may nonetheless contain more

information useful to the networks than time d& .nain signals.

U The human subject were better classifiers of the Air signals than of Bottom or Free-field signals.

Networks, on the other hand, performed slightly better on the underwater sounds than on the Air

signals. Within the A-i classification task, both subjects and networks found Striker to be the most

difficult parameter to classify. The immediate information about Striker was short-lived, leaving

the classifier to infer information about Striker from the ensuing signal.

11.2 EFFECTS OF ADDING NOISE TO SIGNALS

Both time and frequency domain neural nets were tested using low signal-to-noise Air signals as
input. This noise was added at the input layer of the networks. The networks proved moderately

robust to noise, with performance falling off steadily but not precipitously as noise was added to

the signals. It is assumed that these noise levels would have proven quite difficult for human

subjects When noise was added during the training of networks, and the same tests on noisy

signals were made, the resulting networks were significantly more robust to noisy test signals.

While some networks did not improve or actually did worse, the large majority of networks

increased their classification performances over a wide range of input noise.

the hidden nodes of time domain networks trained with noisy signals typically departed from those

of networks trained without noise. When comparing two nodes which produced highly correlated

activations for the various signals classes, one node trained with and one without noise on the

inputs, the node trained with noise typically had a radically different weight pattern. This weight

pattern implemented a much simpler processing strategy than did the weight pattern of the node
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3 trained without noise. This phenomenon did not extend to the frequency domain net"-;rks, in

which noise did not appear to have a significant effect on most hidden nodes (although3 classification performance was usually higher for the network trained with noise).

11.3 HIDDEN NODES AND HUMAN DIMENSIONS

The multidimensional scaling technique combined with the modeling of the scaling dimensions to

produce concise explanations of human processing. Of course we cannot observe the subjects'

processing directly, and so must rely on inferences based on confusion data. We cannot check

these models against the physiological processes of the subjects, and so we assume they are a

reasonable explanation of subject processing along the dimensions. These analysis techniques

yielded explanations of each relevant dimension. These models were generally in the time domain

or the frequency domain with little overlap, and certainly inform of only part of the processing of

the subjects. Nevertheless they provide good explanations of the arrangement of the signals on the

dimensions.

Neural networks attempting to classify the signals develop hidden nodes which often sort the

signals into very similar patterns to those of the dimensions. In fact, each dimension was

correlated to multiple hidden nodes. These hidden nodes were often of both time and frequency

domain, even when correlated to a dimension which was modeled only in one of the domains.

When a particular hidden node was trained in the same domain as the model of the correlated

dimension, in most cases that node employed the same strategy as thot of the model of the

dimension. Neural network hidden nodes often developed the same strategy in classifying the

signals as did the human subjects.

In the time domain, the nodes with the highest level of similarity to the dimension model were

trained using noisy inputs. These nodes employed virtually the same strategies are their human3 counterparts, at least at the level of the models of the human dimensions. When a correlated node

had been trained without noisy inputs, it employed a more complex but clearly related strategy.

Nodes trained with frequency domain data usually showed no difference in strategies between

those nodes trained with and without noise. The strategies, however, bore close resemblance to

those of the correlated dimensions.

I
I 11-3

I



I
Some dimensions appeared to reflect strategies of the subjects which were applied only in one
domain. Network nodes from the other domain were nevertheless able to sort the signal classes
quite similarly. Such a capability might be suggestive of strategies that the subjects could employ,

particularly subjects who have not learned to ext~act all possible information from a signal.

I Experience with the Integrator Gateway Network suggests that these networks can also process the
signals in a manner similar to that of subjects. When the confusion data from a Bottom IGN was

scaled, the first two dimensions were similar to those of the subjects. The first dimension of the
IGN was very highly correlated with both of the first scaling dimensions of the subjects, while the

second dimension of the IGN was moderately correlated with the two second dimension from the
subject results. This network had the same difficulties with the signals in the Bottom set that the

subjects experienced.

1 11.4 EXTENSIONS OF THE RESEARCH

Within the current signal set, several logical extensions of the research may make sense. Network
techniques have not been exhausted. One might be interested in the weight structure of networks
trained to produce the same output as that of a subject attempting to classify the signals. The input

form of the signal would be critical, but a network which successfully mimics human performance
may provide insight into how the person achieved that performance. The differences between high

and low performers could be investigated in this manner, as well as differences between various

signal input transforms.

I Explanations of the dimensions analyzed here might also be forthcoming from the weight

structures of networks trained to replicate the dimensions. Again the complexities of signal input
transforms would be critical to the information gained from the weights.

The human data has also not been fully tapped. Dimensions were derived only from top Navy
performers. Differences in processing strategies between high and low performers, and Navy and
student subjects, may be of interest. Finally, the techniques of the research should be applied to

data more in keeping with the Navy subjects' typical acoustic processing tasks. hllese arbitrary
signals do not reflect sonar technicians' typical environment nor level of difficulty.

I
i !!-4

U



I

NOTES

1. F.W. Young and D.F. Harris, SPSS Base System User's Guide, Ed. M.J. Norusis (SPSS,
Inc.,Chicago, 1990), Chap. 25.

2. F.W. Young and R.M. Hamer, Multi-dimensional Scaling: History, Theory & Applications,
(Erlbaum, Hillsdale, NJ, 1979).

3. Young and Harris, SPSS User's Guide, 428-451.

4. P.W.B. Moore, et.al, "Recognizing Successive Dolphin Echoes With an Integrator Gateway
Network," Neural Networks, 4, No. 6, 701-709 (1991).

5. W.H. Press, et. al., Numerical Recipes in Pascal, (Cambridge University Press, Cambridge,
1989).

I
I
I

I
I
U
I
I

I
I
I



I
I
I
I
I
I
i

APPENDIX A

i FREE-HELD SIGNALS

I This is the first instance of each class of the free-field signals in time domain. The signals are in

original form, but have had any DC offset removed.
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APPENDIX B

I BOTrOM SIGNALS

I This is the first instance of each class of the bottom signals in time domain. The signals are in

original form, but have had any DC offset removed.
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U APPENDIX C

i AIR StIft tS

This is the first instance of each class of the air signals in time domain. The signals are in original

form. Note that the scale for the x axis may differ between classes.
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